Проект по биологии Биоэлектричество

Автор публикации:

Дата публикации:

Краткое описание: ...



[link] Солнечный свет проникает в хлоропласты и переводит электроны на более высокий энергетический уровень, после чего их захватывает протеин. Электроны двигаются по протеинам, которые захватывают все больше и больше их энергии для синтеза сахаров, пока вся она не будет потрачена.

В этом эксперименте ученые перехватывали электроны в тот момент, когда они находились на самом высоком энергетическом уровне. Специалисты помещали золотые электроды в хлоропласты клеток водорослей и откачивали оттуда электроны, генерируя небольшой электрический ток.

В результате ученым удалось добыть электричество экологически безопасным способом, не выделяя в атмосферу углекислого газа. Единственными побочными продуктами фотосинтеза были протоны и кислород.


Концепция биоэлектрического управления пилотируемыми космическими аппаратами


Человек в процессе трудовой деятельности и в повседневной жизни привык взаимодействовать с окружающей средой с помощью движений. В независимости от того, происходит ли это взаимодействие с использованием простых орудий труда или сложных человеко-машинных интерфейсов, в конечном счете, оно сводится к мышечным усилиям как основному управляющему воздействию. Однако, такой способ управления не единственный, более того, иногда в силу особенностей системы или среды управления он может быть не оптимален.

Ярким тому примером может являться ситуация, когда космонавту, испытывающему сильные перегрузки, приходится работать с органами управления пилотируемого космического аппарата (ПКА). Как правило, такая ситуация возникает на участках выведения и спуска ПКА, особенно в случае нештатного спуска по баллистической траектории. В этом случае возникают проблемы с координацией движений вплоть до невозможности ручного управления с использованием опорно-двигательного аппарата.

Чтобы избавить экипаж от необходимости ручного управления с использованием мышечных усилий или свести их к минимуму, в качестве управляющих воздействий могут быть использованы и другие проявления жизнедеятельности, такие как изменение температуры тела, звуковые и механические явления, сопровождающие физиологические процессы орга-низма и т.д. Однако одним из наиболее практически удобных проявлений для цели управления является биоэлектрический процесс, сопровождающий функционирование органов и тканей организма.

На сегодняшний день спектр задач, в которых применяются биоэлектрические системы управления, достаточно широк. В первую очередь сюда входит диагностическая медицинская аппаратура, средства протезирования, аппаратура поддержания жизнедеятельности и т.п. Однако в рамках задачи управления техническими средствами можно выделить отдельный класс такого рода систем как биотехнические системы, в которых роль управляющего звена играет человек-оператор, осознанно формирующий биоэлектрические потенциалы в своем организме в интересах управления.

Биотехнические системы управления имеют ряд преимуществ по сравнению с традиционными:

– использование биопотенциалов отдельных органов и тканей позволяет следить и оценивать функциональное состояние оператора;

– надежность управления может быть повышена использованием биоэлектрической системы в качестве дублирующей;

– выдача управляющих воздействий сопровождается минимальными мышечными усилиями, достаточными для считывания биоэлектрического потенциала, что облегчает деятельность оператора.

Эти и некоторые другие преимущества систем биоэлектрического управления представляют ценность для использования этих систем в области пилотируемой космонавтики в качестве основного или дублирующего контура ручного управления экипажем космического аппарата.


Заключение

Способность животных и растений генерировать биоэлектрические потенциалы — одно из наиболее удивительных свойств биологических систем. Какую бы часть организма или клетки мы не взяли, она обязательно несет определенную электрическую полярность.

Долгое время эту способность рассматривали как интересный биологический феномен, являющийся побочным результатом основных физиолого-биохимических и биофизических процессов. Однако в последние годы становится все более очевидным, что электрическая активность живых клеток — это очень важная функция, которая играет существенную и универсальную роль в жизнедеятельности организмов.

Поскольку клетки или ткани организма имеют электрические полярности, они, соответственно, создают вокруг себя электрические поля. Они очень слабые, но их вполне можно измерить с помощью особых приемов. В настоящее время все более укрепляется представление о том, что эти биополя представляют собой своеобразную силовую матрицу, в соответствии с которой может осуществляться рост и развитие отдельных органов и тканей живых организмов.

Любопытно, что электрическое поле одного объекта способно влиять на электрическое поле другого (если они находятся рядом) и таким образом обеспечивать определенное взаимодействие их физиологических процессов. К сожалению, вопрос о роли биоэлектрических потенциалов в самоорганизации живых систем разработан в науке пока крайне слабо