Рабочая программа по физике

Автор публикации:

Дата публикации:

Краткое описание: ...



Заместитель директора по учебно-воспитательной работе МОУ «Средняя общеобразовательная школа с.Сокур»

________ /З.Н. Петриченко/

«___» ____________ 2015г.



«Утверждаю»

Директор МОУ» Средняя общеобразовательная школа с.Сокур»

___________ /И.С. Князева/

«___» ____________ 2015г.


Приказ от __________№____











РАБОЧАЯ ПРОГРАММА


по физике, 10, 11 классы, базовый

предмет, класс, уровень



на 2015 - 2016 учебный год













Составитель: учитель

Сенин Юрий Николаевич




Пояснительная записка

Значение физики в школьном образовании определяется ролью физической науки в жизни современного общества, ее влиянием на темпы развития научно-технического прогресса. Обучение физике вносит вклад в политехническую подготовку путем ознакомления учащихся с главными направлениями научно-технического прогресса, физическими основами работы приборов, технических устройств, технологических установок.

В задачи обучения физике входит:

развитие мышления учащихся, формирование у них умений самостоятельно приобретать и применять знания, наблюдать и объяснять физические явления;

овладение школьными знаниями об экспериментальных фактах, понятиях, законах, теориях, методах физической науки; о современной научной картине мира; о широких возможностях применения физических законов в технике и технологии;

усвоение школьниками идей единства строения материи и неисчерпаемости процесса ее познания, понимание роли практики в познании, диалектического, характера физических явлений и законов;

формирование познавательного интереса к физике и технике, развитие творческих способностей, осознанных мотивов учения; подготовка к продолжению образования и сознательному выбору профессии.

При изучении физических теорий, мировоззренческой интерпретации законов формируются знания учащихся о современной научной картине мира. Воспитанию учащихся служат сведения о перспективах развития физики и техники, о роли физики в ускорении научно-технического прогресса.

Данная рабочая программа, тематического и поурочного планирования изучения физики в 10 -11 общеобразовательных классах составлена на основе программы Г.Я. Мякишева для общеобразовательных учреждений. Изучение учебного материала предполагает использование учебника Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. «Физика-10», Мякишев Г.Я., Буховцев Б.Б. «Физика 11».

Изучение физики связано с изучением математики, химии, биологии.

Знания материала по физике атомного ядра формируются с использованием знаний о периодической системе элементов Д. И. Менделеева, изотопах и составе атомных ядер (химия); о мутационном воздействии ионизирующей радиации (биология).

Базовый уровень изучения физики ориентирован на формирование общей культуры и в большей степени связан с мировоззренческими, воспитательными и развивающими задачами общего образования, задачами социализации.

Рабочая программа и поурочное планирование включает в себя основные вопросы курса физики 10 - 11 классов предусмотренных соответствующими разделами Государственного образовательного стандарта по физике.

Основной материал включен в каждый раздел курса, требует глубокого и прочного усвоения, которое следует добиваться, не загружая память учащихся множеством частых фактов. Таким основным материалом являются для всего курса физики законы сохранения (энергии, импульса, электрического заряда); для механики — идеи относительности движения, основные понятия кинематики, законы Ньютона; для молекулярной физики — основные положения молекулярно-кинетической теории, основное уравнение молекулярно-кинетической теории идеального газа, первый закон термодинамики; для электродинамики — учение об электрическом поле, электронная теория, закон Кулон, Ома и Ампера, явление электромагнитной индукции; для квантово физики — квантовые свойства сета, квантовые постулаты Бора, закон взаимосвязи массы и энергии. В основной материал также входят важнейшие следствия из законов и теорий, их практическое применение. Изучение физических теорий, мировоззренческая интерпретация законов формируют знания учащихся о современной научной картине мира.

Изучение школьного курса физики должно отражать теоретико-познавательные аспекты учебного материла — границы применимости физических теорий и соотношения между теориями различной степени общности, роль опыта в физике как источника знаний и критерия правильности теорий. Воспитанию учащихся служат сведения о перспективах развития физики и техники, о роли физики в ускорении научно-технического прогресса, из истории развития науки (молекулярно-кинетической теории, учения о полях, взглядов на природу света и строение вещества).

Наглядность преподавания физики и создание условий наилучшего понимания учащимися физической сущности изучаемого материала возможно через применение демонстрационного эксперимента. Перечень демонстраций необходимых для организации наглядности учебного процесса по каждому разделу указан в программе. У большинства учащихся дома в личном пользовании имеют компьютеры, что дает возможность расширять понятийную базу знаний учащихся по различным разделам курса физики. Использование обучающих программ расположенных в образовательных Интернет-сайтах или использование CD – дисков с обучающими программами («Живая физика», «Открытая физика» и др.) создает условия для формирования умений проводить виртуальный физический эксперимент.

В программе предусмотрено выполнение семи лабораторных работ и одиннадцати контрольных работ по основным разделам курса физики 10 - 11 классов. Текущий контроль ЗУН учащихся рекомендуется проводить по дидактическим материалам, рекомендованным министерством просвещения РФ в соответствии с образовательным стандартом. Практические задания, указанные в планировании рекомендуются для формирования у учащихся умений применять знания для решения задач, и подготовки учащихся к сдаче базового уровня ЕГЭ по физике.

Прямым шрифтом указан материал, сформулированный в образовательном стандарте подлежащий обязательному изучению и контролю знаний учащихся. В квадратных скобках указан материал, сформулированный в образовательном стандарте (уровень общего образования) который подлежит изучению, но не является обязательным для контроля и не включается в требования к уровню подготовки выпускников. Курсивом указан материал рекомендованный Г. Я. Мякишевым.

Содержание учебного материала.

10 класс. (68 часов, 2 часа в неделю)

Физика и методы научного познания. (1час)

Что изучает физика. Физические явления. Наблюдения и опыт. Научное мировоззрение.

Кинематика (6 часов)

Механическое движение, виды движений, его характеристики. Равномерное движение тел. Скорость. Уравнение равномерного движения. Графики прямолинейного движения. Скорость при неравномерном движении. Прямолинейное равноускоренное движение. Движение тел. Поступательное движение. Материальная точка.

Демонстрации:

  1. Относительность движения.

  2. Прямолинейное и криволинейное движение.

  3. Запись равномерного и равноускоренного движения.

  4. Падение тел в воздухе и безвоздушном пространстве (трубки Ньютона)

  5. Направление скорости при движении тела по окружности.

Знать: понятия: материальная точка, относительность механического движения, путь, перемещение, мгновенная скорость, ускорение, амплитуда, период, частота колебаний.

Уметь: пользоваться секундомером. Измерять и вычислять физические величины (время, расстояние, скорость, ускорение). Читать и строить графики, выражающие зависимость кинематических величин от времени, при равномерном и равноускоренном движениях. Решать простейшие задачи на определение скорости, ускорения, пути и перемещения при равноускоренном движении, скорости и ускорения при движении тела по окружности с постоянной по модулю скоростью. Изображать на чертеже при решении задач направления векторов скорости, ускорения. Рассчитывать тормозной путь. Оценивать и анализировать информацию по теме «Кинематика» содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях.

Динамика (18 часов)

Взаимодействие тел в природе. Явление инерции. I закон Ньютона. Инерциальные системы отсчета. Понятие силы – как меры взаимодействия тел. II закон Ньютона. III закон Ньютона. Принцип относительности Галилея. Явление тяготения. Гравитационные силы. Закон всемирного тяготения. Первая космическая скорость. Вес тела. Невесомость и перегрузки. Деформация и сила упругости. Закон Гука. Силы трения. Импульс тела и импульс силы. Закон сохранения импульса. Реактивное движение. Работа силы. Механическая энергия тела (потенциальная и кинетическая). Закон сохранения и превращения энергии в механики.

Лабораторная работа №1 «Изучение закона сохранения механической энергии».

Демонстрации:

  1. Проявление инерции.

  2. Сравнение массы тел.

  3. Второй закон Ньютона

  4. Третий закон Ньютона

  5. Вес тела при ускоренном подъеме и падении тела.

  6. Невесомость.

  7. Зависимость силы упругости от величины деформации.

  8. Силы трения покоя, скольжения и качения.

  9. Закон сохранения импульса.

  10. Реактивное движение.

  11. Изменение энергии тела при совершении работы.

  12. Переход потенциальной энергии тела в кинетическую.

Знать: понятия: масса, сила (сила тяжести, сила трения, сила упругости), вес, невесомость, импульс, инерциальная система отсчета, работа силы, потенциальная и кинетическая энергия,

Законы и принципы: Законы Ньютона, принцип относительности Галилея, закон всемирного тяготения, закон Гука, зависимость силы трения скольжения от силы давления, закон сохранения импульса, закон сохранения и превращения энергии.

Практическое применение: движение искусственных спутников под действием силы тяжести, реактивное движение, устройство ракеты, КПД машин и механизмов.

Уметь: измерять и вычислять физические величины (массу, силу, жесткость, коэффициент трения, импульс, работу, мощность, КПД механизмов,). Читать и строить графики, выражающие зависимость силы упругости от деформации. Решать простейшие задачи на определение массы, силы, импульса, работы, мощности, энергии, КПД. Изображать на чертеже при решении задач направления векторов ускорения, силы, импульса тела. Рассчитывать силы, действующие на летчика, выводящего самолет из пикирования, и на движущийся автомобиль в верхней точке выпуклого моста; определять скорость ракеты, вагона при автосцепке с использованием закона сохранения импульса, а также скорость тела при свободном падении с использованием закона сохранения механической энергии. Оценивать и анализировать информацию по теме «Динамика» содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях.

Основы молекулярно-кинетической тео­рии (14 часов)

Строение вещества. Молекула. Основные положения молекулярно-кинетической теории строения вещества. Экспериментальное доказательство основных положений теории. Броуновское движение. Масса молекул. Количество вещества. Строение газообразных, жидких и твердых тел. Идеальный газ в молекулярно-кинетической теории. Среднее значение квадрата скорости молекул. Основное уравнение молекулярно-кинетической теории. Температура и тепловое равновесие. Абсолютная температура. Температура - мера средней кинетической энергии. Измерение скорости молекул. Основные макропараметры газа. Уравнение состояния иде­ального газа. Газовые законы. Зависимость давления насыщенного пара от температуры. Кипение. Влажность воздуха и ее измерение. Кристалличе­ские и аморфные тела.

Демонстрации:

  1. Опыты, доказывающие основные положения МКТ.

  2. Механическую модель броуновского движения.

  3. Взаимосвязь между температурой, давлением и объемом для данной массы газа.

  4. Изотермический процесс.

  5. Изобарный процесс.

  6. Изохорный процесс.

  7. Свойства насыщенных паров.

  8. Кипение воды при пониженном давлении.

  9. Устройство принцип действия психрометра.

  10. Конденсационный гигрометр, волосной гигрометр.

  11. Модели кристаллических решеток.

  12. Рост кристаллов.

Знать: понятия: тепловое движение частиц; массы и размеры молекул; идеальный газ; изотермический, изохорный, изобарный и адиабатный процессы; броуновское движение; температура (мера средней кинетической энергии молекул); насыщенные и ненасыщенные пары; влажность воздуха; анизотропии монокристаллов, кристаллические и аморфные тела; упругие и пластические деформации.

Законы и формулы: основное уравнение молекулярно-кинетической теории, уравнение Менделеева — Клапейрона, связь между параметрами состояния газа в изопроцессах.

Практическое применение: использование кристаллов и других материалов
и технике.

Уметь: решать задачи на расчет количества вещества, молярной массы, с использованием основного уравнения молекулярно-кинетической теории газов, уравнения Менделеева – Клайперона, связи средней кинетической энергии хаотического движения молекул и температуры. Читать и строить графики зависимости между основными параметрами состояния газа. Пользоваться психрометром; определять экспериментально параметры состояния газа. Оценивать и анализировать информацию по теме «Основы молекулярно-кинетической теории» содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях.

Основы термодинамики (7 часов)
Внутренняя энергия. Работа в термодинамике. Количество теплоты. Удельная теплоемкость. Первый закон термодинамики. [Порядок и хаос. Необратимость тепловых процессов.] Принципы действия теплового двигателя. ДВС. Дизель. КПД тепловых двигателей.

Демонстрации:

    1. Сравнение удельной теплоемкости двух различных жидкостей.

    2. Изменение внутренней энергии тела при теплопередаче и совершении работы.

    3. Изменение температуры воздуха при адиабатном расширении и сжатии.

    4. Принцип действия тепловой машины.


Знать: понятия: внутренняя энергия, работа в термодинамике, количество теплоты. удельная теплоемкость необратимость тепловых процессов, тепловые двигатели.

Законы и формулы: первый закон термодинамики.

Практическое применение: тепловых двигателей на транспорте, в энергетике
и сельском хозяйстве; методы профилактики и борьбы с загрязнением окружающей среды.

Уметь: решать задачи на применение первого закона термодинамики, на расчет работы газа в изобарном процессе, КПД тепловых двигателей. Вычислять, работу газа с помощью графика зависимости давления от объема. Оценивать и анализировать информацию по теме «Основы термодинамики» содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях.

Основы электродинамики

Электростатика (11 часов)

Что такое электродинамика. Строение атома. Элементарный электрический заряд. Электризация тел. Два рода зарядов. Закон сохранения электрического заряда. Объяснение процесса электризации тел. Закон Кулона. Электрическое поле. Напряженность электрического поля. Принцип суперпозиций полей. Силовые линии электрического поля. Проводники и диэлектрики в электрическом поле. Поляризация диэлектрика. Потенциал электростатического поля и разность потенциалов. Конденсаторы. Назначение, устройство и виды конденсаторов.

Демонстрации:

    1. Электризация тел трением.

    2. Взаимодействие зарядов.

    3. Устройство и принцип действия электрометра.

    4. Электрическое поле двух заряженных шариков.

    5. Электрическое поле двух заряженных пластин.

    6. Проводники в электрическом поле.

    7. Диэлектрики в электрическом поле.

    8. Устройство конденсатора постоянной и переменной емкости.

    9. Зависимость электроемкости плоского конденсатора от площади пластин, расстояния между ними и диэлектрической проницаемостью среды.


Знать: понятия: элементарный электрический заряд, электрическое поле; напряженность, разность потенциалов, напряжение, электроемкость, диэлектрическая проницаемость.

Законы: Кулона, сохранения заряда.

Практическое применение: защита приборов и оборудования от статического электричества.

Уметь: решать задачи на закон сохранения электрического заряда и закон Кулона; на движение и равновесие заряженных частиц в электрическом поле; на расчет напряженности, напряжения, работы электрического поля, электроемкости. Оценивать и анализировать информацию по теме «Электростатика» содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях.

Законы постоян­ного тока (7 часов)

Электрический ток. Сила тока. Условия, необходимые для существования электрического тока. Закон Ома для участка цепи. Электрическая цепь. Последовательное и параллельное со­единение проводников. Работа и мощность электрического тока. Электродвижущая сила. Закон Ома для полной цепи.

Лабораторная работа №2 «Изучение после­довательного и параллельного соединения проводников».

Лабораторная работа №3 «Измерение ЭДС и внутреннего сопро­тивления источника тока»

Демонстрации:

  1. Механическая модель для демонстрации условия существования электрического тока.

  2. Закон Ома для участка цепи.

  3. Распределение токов и напряжений при последовательном и параллельном соединении проводников.

  4. Зависимость накала нити лампочка от напряжения и силы тока в ней.

  5. Зависимость силы тока от ЭДС и полного сопротивления цепи.

Знать: понятия: сторонние силы и ЭДС;

Законы: Ома для полной цепи.

Практическое применение: электроизмерительные приборы магнитоэлектрической системы.

Уметь: производить расчеты электрических цепей с применением закона Ома для участка и полной цепи и закономерностей последовательного и параллельного соединения проводников, оценивать и анализировать информацию по теме «Законы постоянного тока» содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях.

Пользоваться миллиамперметром, омметром или авометром, выпрямителем электрического тока.

Собирать электрические цепи. Измерять ЭДС и внутреннее сопротивление источника тока.

Электрический ток в различных средах (4 часа)

Электрическая проводимость различных веществ. Зависи­мость сопротивления проводника от температуры. Сверхпрово­димость. Электрический ток в полупроводниках. Применение полу­проводниковых приборов. Электрический ток в вакууме. Электронно-лучевая трубка. Электрический ток в жидкостях. Электрический ток в газах. Несамостоятельный и самостоя­тельный разряды. Плазма.

Демонстрации:

  1. Зависимость сопротивление металлического проводника от температуры.

  2. Зависимость сопротивления полупроводников от температуры и освещенности.

  3. Действие термистора и фоторезистора.

  4. Односторонняя электропроводность полупроводникового диода.

  5. Зависимость силы тока в полупроводниковом диоде от напряжения.

  6. Устройство и принцип действия электронно-лучевой трубки.

  7. Сравнение электропроводности воды и раствора соли или кислоты.

  8. Электролиз сульфата меди.

  9. Ионизация газа при его нагревании.

  10. Несамостоятельный разряд.

  11. Искровой разряд.

  12. Самостоятельный разряд в газах при пониженном давлении.

Знать: понятия: электролиз, диссоциация, рекомбинация, термоэлектронная эмиссия, собственная и примесная проводимость полупроводников, р – n - переход в полупроводниках.

Законы: электролиза.

Практическое применение: электролиза в металлургии и гальванотехнике, электронно-лучевой трубки, полупроводникового диода, терморезистора, транзистора.

Уметь: решать задачи на определение количества вещества выделившегося при электролизе, оценивать и анализировать информацию по теме «Электрический ток в различных средах» содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях.


11 Класс. (68 часов, 2 часа в неделю)

Основы электродинамики (продолжение).

Магнитное поле (7 часов).

Взаимодействие токов. Магнитное поле тока. Магнитная индукция. Сила Ампера. Сила Лоренца.

Демонстрации:

  1. Взаимодействие параллельных токов.

  2. Действие магнитного поля на ток.

  3. Устройство и действие амперметра и вольтметра.

  4. Устройство и действие громкоговорителя.

  5. Отклонение электронного лучка магнитным полем.

Знать: понятия: магнитное поле тока, индукция магнитного поля.

Практическое применение: электроизмерительные приборы магнитоэлектрической системы.

Уметь: решать задачи на расчет характеристик движущегося заряда или проводника с током в магнитном поле, определять направление и величину сил Лоренца и Ампера,

Электромагнитная индукция (7 часов)

Явление электромагнитной индукции. Магнитный поток. Закон электромагнитной индукции. Правило Ленца. Самоиндукция. Индуктивность. Взаимосвязь электрического и магнитного полей. Электромагнитное поле.

Лабораторная работа №1: Изучение электромагнитной индукции.

Демонстрации:

  1. Электромагнитная индукция.

  2. Правило Ленца.

  3. Зависимость ЭДС индукции от скорости изменения магнитного потока.

  4. Самоиндукция.

  5. Зависимость ЭДС самоиндукции от скорости изменения силы цели и от индуктивности проводника.

Знать: понятия: электромагнитная индукция; закон электромагнитной индукции; правило Ленца, самоиндукция; индуктивность, электромагнитное поле.

Уметь: объяснять явление электромагнитной индукции и самоиндукции, решать задачи на применение закона электромагнитной индукции, самоиндукции.

Механические и электромагнитные колебания и волны (19 часов)

Свободные колебания в колебательном контуре. Период свободных электрических колебаний. Переменный электрический ток. Генерирование электрической энергии. Трансформатор. Передача электрической энергии. Электромагнитные волны. Свойства электромагнитных волн. Принципы радиосвязи. Телевидение.

Демонстрации:

  1. Свободные электромагнитные колебания низкой частоты в колебательном контуре.

  2. Зависимость частоты свободных электромагнитных колебаний от электроемкости и индуктивности контура.

  3. Незатухающие электромагнитные колебания в генераторе на транзисторе.

  4. Получение переменного тока при вращении витка в магнитном поле.

  5. Устройство и принцип действия генератора переменного тока (на модели).

  6. Осциллограммы переменною тока

  7. Устройство и принцип действия трансформатора

  8. Передача электрической энергии на расстояние с мощью понижающего и повышающего трансформатора.

  9. Электрический резонанс.

  10. Излучение и прием электромагнитных волн.

  11. Отражение электромагнитных волн.

  12. Преломление электромагнитных волн.

  13. Интерференция и дифракция электромагнитных волн.

  14. Поляризация электромагнитных волн.

  15. Модуляция и детектирование высокочастотных электромагнитных колебаний.

Знать: понятия: свободные и вынужденные колебания; колебательный контур; переменный ток; резонанс, электромагнитная волна, свойства электромагнитных волн.

Практическое применение: генератор переменного тока, схема радиотелефонной связи, телевидение.

Уметь: Измерять силу тока и напряжение в цепях переменного тока. Использовать трансформатор для преобразования токов и напряжений. Определять неизвестный параметр колебательного контура, если известны значение другого его параметра и частота свободных колебаний; рассчитывать частоту свободных колебаний в колебательном контуре с известными параметрами. Решать задачи на применение формул: [pic] , [pic] , [pic] , [pic] ,

[pic] , [pic] , [pic] . Объяснять распространение электромагнитных волн.

Оптика

Световые волны. (17 часов)

Скорость света и методы ее измерения. Законы отражения и преломления света. Волновые свойства света: дисперсия, интерференция света, дифракция света. Когерентность. Поперечность световых волн. Поляризация света.

Лабораторная работа №2: Измерение показателя преломления стекла.

Лабораторная работа №3: Измерение длины световой волны.

Демонстрации:

  1. Законы преломления снега.

  2. Полное отражение.

  3. Световод.

  4. Получение интерференционных полос.

  5. Дифракция света на тонкой нити.

  6. Дифракция света на узкой щели.

  7. Разложение света в спектр с помощью дифракционной решетки.

  8. Поляризация света поляроидами.

  9. Применение поляроидов для изучения механических напряжений в деталях конструкций.
    Знать: понятия: интерференция, дифракция и дисперсия света.

Законы отражения и преломления света,

Практическое применение: полного отражения, интерференции, дифракции и поляризации света.

Уметь: измерять длину световой волны, решать задачи на применение формул, связывающих длину волны с частотой и скоростью, период колебаний с циклической частотой; на применение закона преломления света.



Элементы теории относительности. (4 часа)

Постулаты теории относительности. Принцип относительности Эйнштейна. Постоянство скорости света. Пространство и время в специальной теории относительности. Релятивистская динамика. Связь массы с энергией.

Знать: понятия: принцип постоянства скорости света в вакууме, связь массы и энергии.

Уметь: определять границы применения законов классической и релятивистской механики.

Излучения и спектры. (3 часа)

Различные виды электромагнитных излучений и их практическое применение: свойства и применение инфракрасных, ультрафиолетовых и рентгеновских излучений. Шкала электромагнитных излучений.

Демонстрации:

  1. Невидимые излучения в спектре нагретого тела.

  2. Свойства инфракрасного излучения.

  3. Свойства ультрафиолетового излучения.

  4. Шкала электромагнитных излучений (таблица).

  5. Зависимость плотности потока излучения от расстояния до точечного источника.

Знать: практическое применение: примеры практического применения электромагнитных волн инфракрасного, видимого, ультрафиолетового и рентгеновского диапазонов частот.

Уметь: объяснять свойства различных видов электромагнитного излучения в зависимости от его длины волны и частоты.

Квантовая физика (18 часов)

[Гипотеза Планка о квантах.] Фотоэффект. Уравнение Эйнштейна для фотоэффекта. Фотоны. [Гипотеза де Бройля о волновых свойствах частиц. Корпускулярно-волновой дуализм. Соотношение неопределенности Гейзенберга.]

Строение атома. Опыты Резерфорда. Квантовые постулаты Бора. Испускание и поглощение света атомом. Лазеры.

[Модели строения атомного ядра: протонно-нейтронная модель строения атомного ядра.] Ядерные силы. Дефект массы и энергия связи нуклонов в ядре. Ядерная энергетика. Влияние ионизирующей радиации на живые организмы. [Доза излучения, закон радиоактивного распада и его статистический характер. Элементарные частицы: частицы и античастицы. Фундаментальные взаимодействия]

Значение физики для объяснения мира и развития производительных сил общества. Единая физическая картина мира.

Лабораторная работа №4: «Изучение треков заряженных частиц».

Демонстрации:

  1. Фотоэлектрический эффект на установке с цинковой платиной.

  2. Законы внешнего фотоэффекта.

  3. Устройство и действие полупроводникового и вакуумного фотоэлементов.

  4. Устройство и действие фотореле на фотоэлементе.

  5. Модель опыта Резерфорда.

  6. Наблюдение треков в камере Вильсона.

  7. Устройство и действие счетчика ионизирующих частиц.


Знать: Понятия: фотон; фотоэффект; корпускулярно-волновой дуализм; ядерная модель атома; ядерные реакции, энергия связи; радиоактивный распад; цепная реакция деления; термоядерная реакция; элементарная частица, атомное ядро.

Законы фотоэффекта: постулаты Борщ закон радиоактивного распада.

Практическое применение: устройство и принцип действия фотоэлемента; примеры технического - использования фотоэлементов; принцип спектрального анализа; примеры практических применений спектрального анализа; устройство и принцип действия ядерного реактора.

Уметь: Решать задачи на применение формул, связывающих энергию и импульс фотона с частотой соответствующей световой волны. Вычислять красную границу фотоэффекта и энергию фотозлектронов на основе уравнения Эйнштейна. Определять продукты ядерных реакций на основе законов сохранения электрического заряда и массового числа.
Рассчитывать энергетический выход ядерной реакции. Определять знак заряда или направление движения элементарных частиц по их трекам на фотографиях.


Учебно-тематический план

10 класс


п/п

Тематический блок

Количество часов

(в год)

1

Введение

1

2

Кинематика

6

3

Динамика

18

4

Основы молекулярно-кинетической теории

14

5

Основы термодинамики

7

6

Электростатика

11

7

Законы постоянного тока

7

8

Электрический ток в различных средах

4

10

Всего часов

68


11 класс


п/п

Тематический блок

Количество часов

(в год)

1

Магнитное поле

3

2

Электромагнитная индукция

7

3

Механические и электромагнитные колебания

6

4

Механические и электромагнитные волны

10

5

Световые волны

3

6

Элементы теории относительности

5

7

Световые кванты

14

8

Атом и атомное ядро

11

9

Повторение

5

10

Всего часов

68

Календарно - тематический план

10 класс


проведения

план

факт

1

2

3

4

5

6


Основные особенности физического метода исследования (1 ч)

1




1

Физика и познание мира. Что такое механика.

1

УИНМ

02.09



Механика

27





Кинематика

9




2

Движение точки тела. Система отсчета. Перемещение.

1

УИНМ

04.09


3

Скорость равномерного прямолинейного движения.

1

КУ

09.09


4

Мгновенная скорость. Сложение скоростей.

1

КУ

11.09


5

Ускорение. Движение с постоянным ускорением.

1

КУ

16.09


6

Скорость при движении с постоянным ускорением. Уравнение движения

1

КУ

18.09


7

Равномерное движение точки по окружности.

1

КУ

23.09



Динамика

18




8

Материальная точка. Первый закон Ньютона.

1

УИНМ

25.09


9

Сила. Второй закон Ньютона. Масса.

1

КУ

30.09


10

Третий закон Ньютона. Понятие о системе единиц.

1

КУ

02.10


11

Силы в природе. Силы всемирного тяготения. Закон всемирного тяготения

1

КУ

07.10


12

Первая космическая скорость. Сила тяжести и вес. Невесомость.

1

КУ

09.10


13

Деформация и силы упругости. Закон Гука.

1

КУ

14.10


14

Силы трения. Силы сопротивления при движении твердых тел в жидкостях и газах.

1

КУ

16.10


15

Лабор. Раб. № 1 «Изучение движения тела по окружности под действием сил упругости и тяжести»

1

УКПЗ

21.10


16

Импульс материальной точки. Другая формулировка второго закона Ньютона.

1

УИНМ

23.10


17

Закон сохранения импульса. Реактивное движение.

1

КУ

28.10


18

Работа силы. Мощность.

1

КУ

30.10


19

Энергия. Кинетическая энергия и ее изменение.

1

КУ

11.11


20

Работа силы тяжести. Работа силы упругости. Потенциальная энергия.

1

КУ

13.11


21

Закон сохранения энергии в механике.

1

КУ

18.11


22

Лаб. работа № 2 «Изучение закона сохранения механической энергии».

1

УКПЗ

20.11


23

Равновесие тел Первое условие равновесия твердого тела.

1

УИНМ

25.11


24

Момент силы. Второе условие равновесия твердого тела.

1

КУ

27.11


25

Контр. работа по теме «Механика»

1

УК

02.12



Молекулярная физика






Тепловые явления

21





Основы молекулярно-кинетической теории

14




26

Основные положения МКТ. Размеры и масса молекул. Количество вещества

1

УИНМ

04.12


27

Броуновское движение. Силы взаимодействия молекул.

1

КУ

09.12


28

Строение газообразных, жидких и твердых тел.

1

КУ

11.12


29

Идеальный газ в молекулярно-кинетической теории.

1

КУ

16.12


30

Основное уравнение МКТ газов.

1

КУ

18.12



Температура. Энергия теплового движения молекул





31

Абсолютная температура. Температура- мера средней кинетической энергии молекул

1

УИНМ

23.12


32

Измерение скоростей молекул газа.

1

КУ

25.12



Уравнение состояния идеального газа. Газовые законы





33

Уравнение состояния идеального газа.

1

КУ

13.01


34

Газовые законы.

1


15.01


35

Лабораторная работа № 3 «Опытная проверка закона Гей-Люссака»

1

УКПЗ

20.01


36

Контрольная работа по теме «Основы молекулярно-кинетической теории».

1

УК

22.01



Взаимные превращения жидкостей и газов





37

Насыщенный пар. Зависимость давления насыщенного пара от температуры. Кипение

1

УИНМ

27.01


38

Влажность воздуха и ее измерение.

1

КУ

29.01



Твердые тела





39

Строение и свойства кристаллических и аморфных тел.

1

КУ

03.02



Основы термодинамики

7




40

Внутренняя энергия.

1

КУ

05.02


41

Работа в термодинамике.

1

КУ

10.02


42

Количество теплоты.

1

КУ

12.02


43

Первый закон термодинамики. Применение первого закона термодинамики к различным процессам.

1

КУ

17.02


44

Необратимость процессов в природе.

1

КУ

19.02


45

Принципы действия тепловых двигателей. КПД.

1

КУ

24.02


46

Контр. работа по теме «Основы термодинамики»

1

УКПЗ

26.02



Электродинамика

22





Электростатика

11




47

Электрический заряд. Закон сохранения электрического заряда.

1

УИНМ

03.03


48

Основной закон электростатики - закон Кулона.

1

КУ

05.03


49

Электрическое поле. Напряженность электрического поля.

1

КУ

10.03


50

Силовые линии электрического поля.

1

КУ

12.03


51

Проводники в электростатическом поле.

1

КУ

17.03


52

Диэлектрики в электростатическом поле. Поляризация диэлектриков.

1

КУ

19.03


53

Потенциальная энергия заряженного тела в однородном электростатическом поле.

1

КУ

02.04


54

Потенциал электростатического поля, разность потенциалов

1

КУ

07.04


55

Связь между напряженностью электростатического поля и напряжением.

1

КУ

09.04


56

Электроемкость. Энергия заряженного конденсатора.

1

КУ

14.04


57

Контрольная работа по теме «Электростатика».

1

УК

16.04



Законы постоянного тока

7




58

Электрический ток. Условия, необходимые для его существования. Закон Ома для участка цепи. Сопротивление.

1

УИНМ

21.04


59

Электрические цепи. Последовательное и параллельное соединение проводников.

1

КУ

23.04


60

Лаб. работа № 4 «Изучение последовательного и параллельного соединения проводников».

1

УКПЗ

28.04


61

Работа и мощность постоянного тока.

1

КУ

30.04


62

Электродвижущая сила. Закон Ома для полной цепи.

1

КУ

05.05


63

Лабораторная работа № 5 «Измерение ЭДС и внутреннего сопротивления источника тока».

1

УКПЗ

07.05


64

Контрольная работа по теме «Законы постоянного тока»

1

УК

12.05



Электрический ток в различных средах

4




65

Электрическая проводимость различных веществ. Электрический ток в полупроводниках.

1

УИНМ

14.05


66

Электрический ток через контакт полупроводников р-, n-типов. Полупроводниковый диод. Транзистор.

1

КУ

19.05


67

Электрический ток в жидкостях. Закон электролиза. Электрический ток в газах.

1

КУ

21.05


68

Итоговая контрольная работа

1

УК

26.05



11 класс


Наименование темы урока

Кол-во часов

Дата проведения

план

факт


Электродинамика (10 ч)





Магнитное поле (3ч)




1

Взаимодействие токов. Магнитное поле.

1

03.09


2

Вектор магнитной индукции. Сила Ампера.

1

06.09


3

Сила Лоренца.

1

10.09



Электромагнитная индукция (7 ч)




4

Явление электромагнитной индукции. Магнитный поток. Лабораторная работа №1 Наблюдение действия магнитного поля на ток»

1

13.09


5

Направление индукционного тока. Правило Ленца.

1

17.09


6

Закон электромагнитной индукции. Лабораторная работа №2 «Изучение явления электромагнитной индукции»

1

20.09


7

ЭДС индукции в движущихся проводниках.

1

24.09


8

Самоиндукция. Индуктивность.

1

27.09


9

Энергия магнитного поля.

1

01.10


10

Электромагнитное поле.

1

04.10



Колебания и волны (24 ч)





Механические колебания (6ч)




11

Свободные и вынужденные колебания.

1

08.10


12

Математический маятник.

1

11.10


13

Гармонические колебания. Фаза колебаний

1

15.10


14

Лабораторная работа № 3 «Определение ускорения свободного падения при помощи маятника»

1

18.10


15

Превращение энергии при гармонических колебаниях.

1

22.10


16

Вынужденные колебания. Резонанс.

1

25.10



Электромагнитные колебания (10 ч)




17

Свободные и вынужденные электромагнитные колебания. Колебательный контур.

1

08.11


18

Уравнения, описывающие процессы в колебательном контуре.

1

12.11


19

Период свободных электрических колебаний.

1

15.11


20

Переменный электрический ток.

1

19.11


21

Активное сопротивление в цепи переменного тока.

1

22.11


22

Электрический резонанс.

1

26.11


23

Генерирование электрической энергии.

1

29.11


24

Трансформаторы. Передача электроэнергии.

1

03.12


25

Решение задач по теме «Трансформаторы»

1

06.12


26

Контрольная работа по темам «Механические и электромагнитные колебания»

1

10.12



Механические волны (3 ч)




27

Волновые явления. Распространение механических волн.

1

13.12


28

Длина волны. Скорость волны.

1

17.12


29

Волны в среде.

1

20.12








Электромагнитные волны (5 ч)




30

Электромагнитная волна.

1

24.12


31

Изобретение радио А.С. Поповым. Принципы радиосвязи.

1

27.12


32

Свойства электромагнитных волн.

1

14.01


33

Обобщающий урок «Основные характеристики, свойства и использование электромагнитных волн».

1

17.01


34

Контрольная работа по теме «Механические и электромагнитные волны»

1

21.01



Оптика (14 ч)

1




Световые волны

1



35

Принцип Гюйгенса. Закон отражения света.

1

24.01


36

Закон преломления света. Лабораторная работа №4 «Измерение показателя преломления стекла»

1

28.01


37

Полное отражение.

1

31.01


38

Линза. Построение изображений, даваемых линзами. Формула тонкой линзы. Увеличение линзы.

1

04.02


39

Лабораторная работа №5 «Определение оптической силы и фокусного расстояния собирающей линзы»

1

07.02


40

Дисперсия света.

1

11.02


41

Интерференция механических волн и света.

1

14.02


42

Дифракция механических волн Дифракционная решетка.

1

18.02


43

Поперечность световых волн и электромагнитная теория света Лабораторная работа №6 «Измерение длины световой волны»

1

21.02


44

Виды излучений. Источники света

1

25.02


45

Спектральный анализ. Лабораторная работа № 7 «Наблюдение сплошного и линейчатого спектров»

1

28.02


46

Инфракрасное, ультрафиолетовое и рентгеновское излучения.

1

04.03


47

Шкала электромагнитных излучений

1

07.03



Контрольная работа по теме «Оптика»

1

11.03



Квантовая физика (20 ч)





Световые кванты (4 ч)




48

Зарождение квантовой теории. Фотоэффект.

1

14.03


49

Теория фотоэффекта.

1

18.03


50

Фотоны.

1

21.03


51

Контрольная работа по теме «Световые кванты».

1

01.04



Атом и атомное ядро (16ч)




52

Опыты Резерфорда. Ядерная модель атома.

1

04.04


53

Квантовые постулаты Бора. Модель атома водорода по Бору.

1

08.04


54

Методы наблюдения и регистрации радиоактивных излучений.

1

11.04


55

Открытие радиоактивности. Альфа-, бета- и гамма- излучения.

1

15.04


56

Радиоактивные превращения.

1

18.04


57

Закон радиоактивного распада. Период полураспада.

1

22.04


58

Открытие нейтрона.

1

25.04


59

Строение атомного ядра. Ядерные силы. Энергия связи атомных ядер.

1

29.04


60

Ядерные реакции. Энергетический выход ядерных реакций.

1

02.05


61

Деление ядер урана. Цепные ядерные реакции. Ядерный реактор

1

06.05


62

Термоядерные реакции. Применение ядерной энергетики.

1

13.05


63

Биологическое действие радиоактивных излучений.

1

16.05


64

Повторение «Электромагнитные колебания»

1

20.05


65

Повторение «Оптика»

1

23.05


66

Итоговая контрольная работа

1



67

Резерв

1



68

резерв

1








УИНМ – урок изучения нового материала

УЗЗ – урок закрепления знаний

УКПЗ – урок комплексного применения знаний

УОСЗ – урок обобщения и систематизации знаний

УК – урок контроля

КУ – комбинированный урок

ТРЕБОВАНИЯ К УРОВНЮ
ПОДГОТОВКИ ВЫПУСКНИКОВ

В результате изучения физики на базовом уровне ученик должен

знать/понимать

  • смысл понятий: физическое явление, гипотеза, закон, теория, вещество, взаимодействие, электромагнитное поле, волна, фотон, атом, атомное ядро, ионизирующие излучения, планета, звезда, галактика, Вселенная;

  • смысл физических величин: скорость, ускорение, масса, сила, импульс, работа, механическая энергия, внутренняя энергия, абсолютная температура, средняя кинетическая энергия частиц вещества, количество теплоты, элементарный электрический заряд;

  • смысл физических законов классической механики (всемирного тяготения, сохранения энергии, импульса), сохранения электрического заряда, термодинамики, электромагнитной индукции, фотоэффекта;

  • вклад российских и зарубежных ученых, оказавших наибольшее влияние на развитие физики;

уметь

  • описывать и объяснять физические явления и свойства тел: движение небесных тел и искусственных спутников Земли; свойства газов, жидкостей и твердых тел; электромагнитную индукцию, распространение электромагнитных волн; волновые свойства света; излучение и поглощение света атомом; фотоэффект;

  • отличать гипотезы от научных теорий; делать выводы на основе экспериментальных данных; приводить примеры, показывающие, что: наблюдения и эксперимент являются основой для выдвижения гипотез и теорий, позволяют проверить истинность теоретических выводов; физическая теория дает возможность объяснять известные явления природы и научные факты, предсказывать еще неизвестные явления;

  • приводить примеры практического использования физических знаний: законов механики, термодинамики и электродинамики в энергетике; различных видов электромагнитных излучений для развития радио и телекоммуникаций, квантовой физики в создании ядерной энергетики, лазеров;

  • воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов, средств радио- и телекоммуникационной связи;

  • оценки влияния на организм человека и другие организмы загрязнения окружающей среды;

  • рационального природопользования и защиты окружающей среды.

Система оценивания.

Примерные нормы оценки знаний и умений учащихся по физике

При оценке ответов учащихся учитываются следующие знания:

о физических явлениях:

  • признаки явления, по которым оно обнаруживается;

  • условия, при которых протекает явление;

  • связь данного явлении с другими;

  • объяснение явления на основе научной теории;

  • примеры учета и использования его на практике;

о физических опытах:

  • цель, схема, условия, при которых осуществлялся опыт, ход и результаты опыта;

о физических понятиях, в том числе и о физических величинах:

  • явления или свойства, которые характеризуются данным понятием (величиной);

  • определение понятия (величины);

  • формулы, связывающие данную величину с другими;

  • единицы физической величины;

  • способы измерения величины;

о законах:

  • формулировка и математическое выражение закона;

  • опыты, подтверждающие его справедливость;

  • примеры учета и применения на практике;

  • условия применимости (для старших классов);

о физических теориях:

  • опытное обоснование теории;

  • основные понятия, положения, законы, принципы;

  • основные следствия;

  • практические применения;

  • границы применимости (для старших классов);

о приборах, механизмах, машинах:

  • назначение; принцип действия и схема устройства;

  • применение и правила пользования прибором.

Физические измерения.

    • Определение цены деления и предела измерения прибора.

    • Определять абсолютную погрешность измерения прибора.

    • Отбирать нужный прибор и правильно включать его в установку.

    • Снимать показания прибора и записывать их с учетом абсолютной погрешности измерения. Определять относительную погрешность измерений.

Следует учитывать, что в конкретных случаях не все требования могут быть предъявлены учащимся, например знание границ применимости законов и теорий, так как эти границы не всегда рассматриваются в курсе физики средней школы.

Оценке подлежат умения:

  • применять понятия, законы и теории для объяснения явлений природы, техники; оценивать влияние технологических процессов на экологию окружающей среды, здоровье человека и других организмов;

  • самостоятельно работать с учебником, научно-популярной литературой, информацией в СМИ и Интернете ;

  • решать задачи на основе известных законов и формул;

  • пользоваться справочными таблицами физических величин.

При оценке лабораторных работ учитываются умения:

  • планировать проведение опыта;

  • собирать установку по схеме;

  • пользоваться измерительными приборами;

  • проводить наблюдения, снимать показания измерительных приборов, составлять таблицы зависимости величин и строить графики;

  • оценивать и вычислять погрешности измерений;

  • составлять краткий отчет и делать выводы по проделанной работе.

Следует обращать внимание на овладение учащимися правильным употреблением, произношением и правописанием физических терминов, на развитие умений связно излагать изучаемый материал.


1. Оценка устных ответов учащихся.


Оценка 5 ставится в том случае, если учащийся показывает верное понимание физической сущности рассматриваемых явлений и закономерностей, законов и теорий, дает точное определение и истолкование основных понятий и законов, теорий, а также правильное определение физических величин, их единиц и способов измерения; правильно выполняет чертежи, схемы и графики; строит ответ по собственному плану, сопровождает рассказ новыми примерами, умеет применять знания в новой ситуации при выполнении практических заданий; может устанавливать связь между изучаемым и ранее изученным материалом по курсу физики, а также с материалом усвоенным при изучении других предметов.

Оценка 4 ставится в том случае, если ответ ученика удовлетворяет основным требованиям к ответу на оценку 5, но без использования собственного плана, новых примеров, без применения знаний в новой ситуации, без использования связей с ранее изученным материалом, усвоенным при изучении других предметов; если учащийся допустил одну ошибку или не более двух недочетов и может исправить их самостоятельно или с небольшой помощью учителя.

Оценка 3 ставится в том случае, если учащийся правильно понимает физическую сущность рассматриваемых явлений и закономерностей, но в ответе имеются отдельные пробелы в усвоении вопросов курса физики; не препятствует дальнейшему усвоению программного материала, умеет применять полученные знания при решении простых задач с использованием готовых формул, но затрудняется при решении задач, требующих преобразования некоторых формул; допустил не более одной грубой и одной негрубой ошибки, не более двух-трех негрубых недочетов.

Оценка 2 ставится в том случае, если учащийся не овладел основными знаниями в соответствии с требованиями и допустил больше ошибок и недочетов, чем необходимо для оценки 3.

Оценка 1 ставится в том случае, если ученик не может ответить ни на один из поставленных вопросов.


2. Оценка письменных контрольных работ.


Оценка 5 ставится за работу, выполненную полностью без ошибок и недочетов.

Оценка 4 ставится за работу, выполненную полностью, но при наличии не более одной ошибки и одного недочета, не более трех недочетов.

Оценка 3 ставится за работу, выполненную на 2/3 всей работы правильно или при допущении не более одной грубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и трех недочетов, при наличии четырех-пяти недочетов.

Оценка 2 ставится за работу, в которой число ошибок и недочетов превысило норму для оценки 3 или правильно выполнено менее 2/3 работы.

Оценка 1 ставится за работу, невыполненную совсем или выполненную с грубыми ошибками в заданиях.

3. Оценка лабораторных работ.

Оценка 5 ставится в том случае, если учащийся выполнил работу в полном объеме с соблюдением необходимой последовательности проведения опытов и измерений; самостоятельно и рационально монтирует необходимое оборудование; все опыты проводит в условиях и режимах, обеспечивающих получение правильных результатов и выводов; соблюдает требования правил безопасного труда; в отчете правильно и аккуратно выполняет все записи, таблицы, рисунки, чертежи, графики, вычисления, правильно выполняет анализ погрешностей.

Оценка 4 ставится в том случае, если учащийся выполнил работу в соответствии с требованиями к оценке 5, но допустил два-три недочета, не более одной негрубой ошибки и одного недочета.

Оценка 3 ставится в том случае, если учащийся выполнил работу не полностью, но объем выполненной части таков, что позволяет получить правильные результаты и выводы, если в ходе проведения опыта и измерений были допущены ошибки.

Оценка 2 ставится в том случае, если учащийся выполнил работу не полностью и объем выполненной работы не позволяет сделать правильные выводы, вычисления; наблюдения проводились неправильно.

Оценка 1 ставится в том случае, если учащийся совсем не выполнил работу.

Во всех случаях оценка снижается, если учащийся не соблюдал требований правил безопасного труда.


4. Перечень ошибок.


I. Грубые ошибки.

  1. Незнание определений основных понятий, законов, правил, положений теории, формул, общепринятых символов, обозначения физических величин, единицу измерения.

  2. Неумение выделять в ответе главное.

  3. Неумение применять знания для решения задач и объяснения физических явлений; неправильно сформулированные вопросы, задания или неверные объяснения хода их решения, незнание приемов решения задач, аналогичных ранее решенным в классе; ошибки, показывающие неправильное понимание условия задачи или неправильное истолкование решения.

  4. Неумение читать и строить графики и принципиальные схемы

  5. Неумение подготовить к работе установку или лабораторное оборудование, провести опыт, необходимые расчеты или использовать полученные данные для выводов.

  6. Небрежное отношение к лабораторному оборудованию и измерительным приборам.

  7. Неумение определить показания измерительного прибора.

  8. Нарушение требований правил безопасного труда при выполнении эксперимента.


II. Негрубые ошибки.

  1. Неточности формулировок, определений, законов, теорий, вызванных неполнотой ответа основных признаков определяемого понятия. Ошибки, вызванные несоблюдением условий проведения опыта или измерений.

  2. Ошибки в условных обозначениях на принципиальных схемах, неточности чертежей, графиков, схем.

  3. Пропуск или неточное написание наименований единиц физических величин.

  4. Нерациональный выбор хода решения.


III. Недочеты.


  1. Нерациональные записи при вычислениях, нерациональные приемы вычислений, преобразований и решения задач.

  2. Арифметические ошибки в вычислениях, если эти ошибки грубо не искажают реальность полученного результата.

  3. Отдельные погрешности в формулировке вопроса или ответа.

  4. Небрежное выполнение записей, чертежей, схем, графиков.

5. Орфографические и пунктуационные ошибки

Список литературы


1. Астрономия: Учеб. для 11 кл. общеобразоват. учреждений / В.В. Порфирьев. - 2-е изд, перераб. и доп. - М.: Просвещение, 2003.- 174 с.

2. Астрономия: Учеб. для 11 кл. общеобразоват. учреждений / Е.П. Левитан. - 8 -е изд. - М.: Просве­щение, 2003. - 224 с.

3. Гомоюнов К.К., Кесамаллы М.Ф., Кесамаллы Ф.П. и др. Толковый словарь школьника по физике: Учеб. пособие для средней школы / под общей ред. К.К. Гомоюнова.- серия «Учебники для вузов. Специальная литература». - СПб.: изд-во «Специальная литература», изд-во «Лань», 19 - 384 с.

4. Единый государственный экзамен: Физика: Тестовые задания для подг. к Единому гос. экзамену: 10-11 кл. / Н.Н. Тулькибаева, А.Э. Пушкарев, М.А. Драпкин, Д.В. Климентьев – M.: Просвещение, 2004.-254 с.

5. Единый государственный экзамен: Физика: Сборник заданий / Г.Г.Никифоров, В.А.Орлов, Н.К.Ханнанов. – М.:Просвещение,Эксмо,2006. 240 с.

6. Извозчиков В.А., Слуцкий A.M. Решение задач по физике на компьютере: Кн. для учителя. - М.: Просвещение, 1999. - 256 с.

7. Сборник задач по физике: для 10-11 кл. общобразоват. учрежедний / Сост. Г.Н Степанова - 9-е изд. М.: Просвещение, 2003. - 288 с.

8. Физика. Задачник. 10-11 кл.: Пособие для общеобразоват. учреждений / Рымкевич А. П. - 7-е изд., стереотип. - М.: Дрофа, 2003. - 192 с.

9. Физика: Учеб. для 10 кл. общеобразоват. учреждений / Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. - 10-е изд. - М.: Просвещение, 2002. - 336 с.

10. Физика: Учеб. для 11 кл. общеобразоват. учреждений / Г.Я. Мякишев, Б.Б. Буховцев. - 1-е изд. -М.: Просвещение, 2003. - 336 с.

11. Фронтальные лабораторные работы по физике в 7-11 классах общеобразовательных учреждениях: Кн. для учителя / В.А. Буров, Ю.И. Дик, Б.С. Зворыкин и др.; под ред. В.А. Бурова, Г.Г. Никифорова. - М.: Просвещение: Учеб, лит., 1996. - 368 с.


Лист внесенных изменений

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________