|
Блок уроков по географии на тему Топливно-энергетический комплес мира (10 класс)
Автор публикации: Цындук А.Н.
Дата публикации: 2016-11-19
Краткое описание: ...
Министерство образования Автономной Республики Крым Отдел образования Белогорской районной государственной администрации
Блок уроков по теме «Топливно-энергетический комплекс мира»
Учитель УВК «Школа-гимназия» №1 I – III ступеней имени К.И.Щёлкина с модульной технологией обучения учитель-методист Цындук Александр Николаевич [pic] [pic] [pic] [pic] [pic] Блок уроков по теме «Топливно-энергетический комплекс мира» [pic] [pic] [pic] [pic] [pic] Цели: сформировать представления о топливном балансе мира; рассмотреть рост производства различных видов топлива; дать характеристику газовой, нефтяной, угольной промышленности мира; сформировать понятия об электроэнергетике мира: страны с высоким количеством электроэнергии на душу населения и низким, о странах с различной структурой энергетического баланса; развитие памяти, логического мышления. Оборудование: мультимедийный атлас: карты «Топливная промышленность мира», «Полезные ископаемые мира», карты учебника статистические материалы, таблицы, атласы, мультимедийная доска. Тип урока: лекция с элементами беседы и самостоятельной работы с текстами учебника. Ход урока I.Организационный момент. II.Мотивация учебной деятельности учащихся: Современная энергетика – составляющая мирового хозяйства, ведущая отрасль мировой промышленности, её кровеносная система. От уровня развития этой отрасли зависит развитие всех остальных отраслей хозяйства. По уровню развития энергетики можно судить об уровне развития страны: не бывает развитых стран без развитого топливно-энергетического комплекса. Первые электростанции, работавшие на угле, были построены в Европе около 240 лет назад. Поэтому именно Западная Европа, а затем и США первыми прошли все основные этапы индустриального развития. III.Актуализация опорных знаний учащихся: 1.Какие производства включает в себя топливно-энергетический комплекс? 2.Что такое «топливно-энергетический баланс»? 3.Какие виды топливно-энергетических ресурсов вы знаете? 4.Какие виды электростанций вы знаете? 5.Какие виды энергии относятся к нетрадиционным? IV.Изучение нового материала. Учитель. Сегодня на уроке мы познакомимся с ТЭК мира, термином известным вам с 9 класса. За историю развития топливной промышленности можно выделить три этапа: 1.1900 – 1950 гг – угольный 2.1950 – 1970 гг – нефтяной 3.1970 – 2000 гг – нефтегазовый Энергетика относится к так называемым «базовым» отраслям промышленности: её развитие является непременным условием развития всех других отраслей промышленности и всей экономики любой страны. Она также относится к «авангардной тройке». Энергетика включает в себя совокупность отраслей, снабжающих экономику энергоресурсами. В нее входят все топливные отрасли и электроэнергетика, включая разведку, освоение, производство, переработку и транспортировку источников тепловой и электрической энергии и самой энергии. В мировом хозяйстве развивающиеся страны выступают главным образом в качестве поставщиков, а развитые - потребителей энергии. В развитии мировой энергетики решающую роль сыграл энергетический кризис начала 70-х гг. Цена на нефть (1965-1973 гг.) была значительно ниже среднемирового уровня на другие энергоносители. В результате нефть вытеснила другие виды топлива из топливно-энергетического баланса (ТЭБ) в экономически развитых странах. На смену угольному этапу пришел нефтегазовый, продолжающийся и сейчас. Таблица 1. Изменение структуры ТЭБ мира (в %)
Нефтяная промышленность мира. Нефтяная промышленность - одна из важнейших и наиболее быстро развивавшихся до последнего времени отраслей тяжелой промышленности. Основная часть ее продукции используется в энергетических целях, в связи с чем она относится к группе отраслей энергетики. Часть нефти и нефтепродуктов идет в нефтехимическую переработку. Главная особенность географии мировых ресурсов нефти заключается в том, что большая их часть приходится на развивающиеся страны, в первую очередь Ближнего Востока. В 19 гигантских месторождениях Аравийского полуострова сосредоточена 1/2 нефтяных богатств планеты. Таблица 2. Мировые достоверные запасы и добыча нефти (на 1 января 1995 г) * Исключая Ближний и Средний Восток **Данные по СНГ включают достоверные и часть разведанных запасов. Среди промышленно развитых стран можно выделить два типа государств: с одной стороны, США, Россия, Канада, обладающие собственными запасами и мощной нефтедобычей; с другой - европейские страны (исключая Норвегию и Великобританию), а также Япония и ЮАР, которые лишены собственных ресурсов, и хозяйство которых базируется целиком на импортной нефти. Тем не менее, доля развитых стран в мировой нефтедобыче повышается (1970 г. - 12% мировой добычи, 1994 г. - 45%, около 1,5 млрд. т нефти). При этом на долю стран ОПЕК приходится 41 % мировой добычи (1,2 млрд. т). Таблица 3. Ведущие страны мира по запасам и добыче нефти (2008) Газовая промышленность мира Основными запасами природного газа обладают государства СНГ (40%), в т.ч. Россия (39,2%). Доля стран Ближнего и Среднего Востока в мировых запасах газа составляет около 30%, Северной Америки около 5%, Западной Европы 4% (1994 г.). Самыми богатыми природным газом из зарубежных стран являются Иран, Саудовская Аравия, США, Алжир, ОАЭ, Нидерланды, Норвегия, Канада. В целом же доля промышленно развитых капиталистических стран в мировых запасах природного, газа намного меньше, чем развивающихся. Однако основная часть добычи сосредоточена в промышленно развитых странах. Таблица 4. Разведанные запасы, добыча, потребление природного газа (на 1 янв.1995 г) 3. География добычи ПГ существенно отличается от добычи нефти. Более 2/5 (40%) его добывается на территории государств СНГ (из которых 80% - в России, далеко опережающей все остальные страны мира) и в США (25% процентов мировой добычи). Затем, многократно отставая от первых двух стран, идут Канада, Нидерланды, Норвегия, Индонезия, Алжир. Все эти государства являются крупнейшими экспортерами природного газа. Основная часть экспортируемого газа идет по газопроводам, а также транспортируется в сжиженном виде (1/4).
Таблица 5. Десять первых стран мира по добычи природного газа
Угольная промышленность мира Угольная промышленность - наиболее старая и развитая из всех отраслей топливно-энергетического комплекса в промышленно развитых странах. По оценке, суммарные запасы угля во всем мире определены в 13-14 трлн. т (52% - каменный уголь, 48% - бурый). Более 9/10 достоверных запасов каменного угля, т.е. извлекаемых с использованием существующих технологий, сосредоточено: в Китае, в США (более 1/4); на территории государств СНГ (более 1/5); в ЮАР (более 1/10 мировых запасов). Из других промышленно развитых стран можно выделить запасы угля в ФРГ, Великобритании, Австралии, Польше, Канаде; из развивающихся - в Индии, Индонезии, Ботсване, Зимбабве, Мозамбике, Колумбии и Венесуэле. В последние десятилетия традиционная добыча угля в странах Западной Европы значительно сократилась, и основными центрами добычи стали Китай, США и Россия. На их долю приходится почти 60% всей угледобычи мира, которая составляет 4,5 млрд. т. в год. Далее можно отметить ЮАР, Индию, ФРГ, Австралию, Великобританию (добыча превышает 100 млн. т в год в каждой из этих стран). Существенное значение имеет также качественный состав углей, в частности, доля коксующихся углей, используемых в качестве сырья для черной металлургии. Наиболее велика их доля в угольных запасах Австралии, ФРГ, Китая, США. Таблица 6. Страны-лидеры по добыче угля (2008)
Урановая промышленность мира Содержание урана в земной коре составляет 0,0003 %, он встречается в поверхностном слое земли в виде четырех видов отложений. Во-первых, это жилы уранинита, или урановой смолки (диоксид урана UO2), очень богатые ураном, но редко встречающиеся. Им сопутствуют отложения радия, так как [link] Рис. 1. Атомные электростанции мира (в США, Западной Европе и Японии показаны не все АЭС) Таблица 10. Производство ядерной энергии (1993) геотермальные электростанции; в Израиле, на Кипре довольно широко используют солнечную энергию. Первая промышленная ГеоТЭС была построена в итальянской провинции Тоскана, в местечке Лардерелло около Пизы, в 1913 г. Затем в Италии стали работать и другие небольшие ГеоТЭС. В 1920-х гг. начали строить ГеоТЭС в Японии, в 1950-х – в Новой Зеландии и Мексике, в 1960-х – в США, в 1970-х – в Китае, Индонезии, Турции, Кении, Сальвадоре, на Филиппинах, в 1980-х – в ряде стран Центральной Америки, в 1990-х – в Австралии. Соответственно и суммарная мощность ГеоТЭС стран мира возрастала следующим образом (в тыс. кВт): в 1950 г. – 240, в 1960 г. – 370, в 1970 г. – 715, в 1980 г. – 2400, в 1990 г. – 8770. Число стран, имеющих ГеоТЭС, уже превышает 20. До недавнего времени внеконкурентное первое место по количеству (около 20) и мощности (более 3,2 млн кВт) ГеоТЭС занимали США. В этой стране геотермальные электростанции работают в штатах Юта, Гавайи, но большинство их находится в северной части Калифорнии, в Долине гейзеров. Однако с начала 1990-х гг. разработки геотермальных источников в США явно замедлились, почти прекратилась практика предоставления разного рода льгот производителям и потребителям геотермальной энергии. К тому же ГеоТЭС в Долине гейзеров пострадали от падения внутреннего давления и уменьшения поступления горячего пара. Так что в последнее время строительство новых ГеоТЭС в стране не происходило. Вторым мировым лидером в области геотермальной электроэнергетики стали Филиппины, которые уже в 1995 г. имели несколько ГеоТЭС мощностью 2,2 млн кВт и ныне, по-видимому, по этому показателю уже обогнали США. Первая ГеоТЭС была сооружена здесь в 1977 г. (с помощью иностранного капитала). Согласно расчетам, к 2000 г. геотермальные электростанции этой страны должны были удовлетворять до 30 % ее потребности в электроэнергии. Далее по размерам производства электроэнергии на ГеоТЭС следуют Мексика, Италия и Япония. В последние два десятилетия ветроэнергетика развивалась более высокими темпами, чем энергетика, использующая остальные виды НВИЭ. Отсюда и значительный рост мощностей ветроустановок в мире. В 1981 г., когда началось их применение в американском штате Калифорния, общая их мощность составляла всего 15 тыс. кВт. К 1985 г. она возросла до 1,1 млн, к 1990 г. – до 2 млн, к 1995 г. – до 5 млн (все такие установки давали тогда 8 млрд кВт ч электроэнергии), а к 2000 г. – до 13 млн кВт. Согласно некоторым прогнозам, в 2006 г. она может достигнуть 36 млн кВт. География мировой ветроэнергетики претерпела довольно существенные изменения. До середины 1990-х гг. по суммарной мощности ВЭУ (или ветроэлектростанций – ВЭС) первое место занимали США: в 1985 г. на эту страну приходилось 95 %, да и в 1994 г. – 48 % всех мировых мощностей. Почти все они сконцентрированы здесь в штате Калифорния, где находятся и самые крупные в стране отдельные ветро-электростанции и самые большие «ветровые фермы» (на одной из них размещено около 1000 ВЭУ, так что ее суммарная мощность превышает 100 тыс. кВт). Кроме того, такие установки работают в штатах Нью-Мексико, Гавайи, Род-Айленд, ведется или намечается их сооружение и в нескольких других штатах. Однако во второй половине 1990-х гг. мировое лидерство в ветроэнергетике перешло к Западной Европе, где уже в 1996 г. было сосредоточено 55 % мировых мощностей ветроэнергетических установок. Ветроэлектростанции уже работают в 14 странах Западной Европы, причем в первую их пятерку входят Германия, Дания, Нидерланды, Великобритания и Испания, но определяющая роль принадлежит двум первым из них. До начала 1990-х гг. европейское первенство удерживала страна – родоначальник ветроэнергетики– Дания. Тем не менее во второй половине 1990-х гг. Дания уступила его Германии, мощности ветроустановок которой в 1999 г. достигли 4 млн кВт, а выработка электроэнергии на них – б млрд кВт ч. К тому же в отличие от Дании, где преобладают мелкие автономно работающие установки, для Германии более характерны крупные «ветровые фермы». Больше всего их на самом «продуваемом» участке ее территории – побережье Северного моря в пределах земли Шлезвиг-Гольштейн. В 2005 г. здесь была введена в строй крупнейшая в мире ВЭУ, которая ежегодно производит 17 млн квт-ч электроэнергии. В целом ещё в середине 1990-х гг. ветроэнергетические установки Западной Европы обеспечивали бытовые потребности в электроэнергии примерно 3 млн человек. В рамках ЕС была поставлена задача к 2005 г. увеличить долю ветроэнергетики в производстве электроэнергии до 2 % (это позволит закрыть угольные ТЭС мощностью 7 млн кВт), а к 2030 г. – до 30 %. Из других стран мира, имеющих перспективы для развития ветроэнергетики, можно назвать Индию, Китай и Японию в Азии, Канаду в Северной Америке, Мексику, Бразилию, Аргентину, Коста-Рику в Латинской Америке, Австралию. Но настоящий рывок в этой сфере в 1990-е гг. предприняла только Индия, которая, с одной стороны, испытывает дефицит традиционных видов топлива, а с другой – обладает значительным потенциалом ветроэнергетических ресурсов, обусловленным муссонной циркуляцией воздушных масс в сочетании с особенностями строения рельефа страны. В результате осуществления большой государственной программы строительства ВЭУ, рассчитанной на привлечение иностранного капитала, Индия по их суммарной мощности уже обогнала Данию и вышла на третье место в мире после США и Германии. Хотя солнечную энергию использовали для обогрева домов еще в Древней Греции, зарождение современной гелиоэнергетики произошло только в XIX в., когда был сконструирован солнечный коллектор для подогрева воды, а становление ее – уже в XX в. Наиболее благоприятные условия для широкого использования солнечной энергии существуют на территориях, расположенных южнее 50-й параллели. Что же касается самого ее преобразования в тепловую или электрическую энергию, то его можно осуществлять при помощи трех технико-технологических способов. Первый способ, который получил наиболее широкое распространение, – это теплоснабжение с использованием солнечных коллекторов-водонагревателей, которые неподвижно устанавливают на крышах домов под определенным углом к горизонту. Они обеспечивают нагрев теплоносителя (вода, воздух, антифриз) на 40–50 °C по сравнению с температурой окружающей среды. Их применяют также для кондиционирования воздуха, сушки сельскохозяйственных продуктов, опреснения морской воды и др. Больше всего таких установок теплоснабжения имеют США и Япония, но самая высокая плотность их из расчета на душу населения достигнута в Израиле и на Кипре. Так, в Израиле 800 тыс. солнечных коллекторов обеспечивают горячей водой 70 % жителей этой страны. Солнечные коллекторы применяются также в Китае, Индии, ряде стран Африки (преимущественно для привода в действие насосных установок) и Латинской Америки. Второй способ заключается в преобразовании солнечной энергии уже не в тепловую, а в электрическую, причем «напрямую» – при помощи фотоэлектрических установок (солнечных батарей) на кремниевой основе – наподобие тех, которые устанавливают на космических аппаратах. Первая такая электростанция была сооружена в Калифорнии в 1981 г., а затем они появились и в других регионах США, и в других странах. Хотя получаемая при их помощи электроэнергия продолжает оставаться еще весьма дорогой (30 центов за 1 кВт ч), наиболее богатые страны уже развернули широкую кампанию за установку солнечных батарей на крышах и фасадах домов. Лидерство в этом деле захватила Япония, которая контролирует также около 1/3 мирового рынка фотоэлектрических элементов. Но и Германия уже приступила к осуществлению программы под названием «1000 крыш и фасадов», а в США в 1997 г. тогдашний президент страны Клинтон провозгласил программу «Миллион крыш». Наконец, третий способ, также обеспечивающий превращение солнечной энергии в электрическую, реализуется при помощи сооружения собственно солнечных электростанций (СЭС), которые подразделяются на два типа – башенные и параболические. В 1970-х – начале 1980-х гг. башенные СЭС были построены в США, Японии, Испании, Италии, во Франции, в СССР, но затем они были остановлены из-за неконкурентоспособности. Однако опыт, накопленный при их эксплуатации, позволил начать проектирование нового поколения таких СЭС. Из всех видов нетрадиционных возобновляемых источников энергии Мирового океана наибольшее значение может иметь энергия приливов. Однако несмотря на благоприятные природные предпосылки строительство приливных электростанций (ПЭС) пока сдерживается некоторыми факторами экономического характера. Так, при оценке экономических выгод строительства ПЭС нужно учитывать, что наибольшие амплитуды приливов-отливов характерны для окраинных морей умеренного пояса. Многие из этих побережий расположены в необжитых местах, на большом удалении от главных районов расселения и экономической активности, следовательно, и потребления электроэнергии. Нужно учитывать также и то, что рентабельность ПЭС резко возрастает по мере увеличения их мощности до 3–5 млн и тем более 10–15 млн кВт. Но сооружение таких станций-гигантов, к тому же в отдаленных районах, требует особенно больших материальных затрат, не говоря уже о сложнейших технических проблемах. Если не принимать в расчет многочисленные (их более 100) ПЭС сугубо местного значения в прибрежных районах Китая, то в конце 1990-х гг. во всем мире действовало лишь несколько ПЭС промышленного или опытно-промышленного характера. Первой из них была введена в эксплуатацию в 1966 г. ПЭС «Ранс» в Бретани (Франция). Она сооружена в заливе Сен-Мало на побережье Ла-Манша, в том месте, где в него впадает р. Ранс. Эта ПЭС состоит из плотины (дамбы) длиной 350 м с 24 шлюзами – отверстиями круглого сечения диаметром 5,25 м. В каждом из них смонтирована горизонтальная осевая гидротурбина. Во время прилива, достигающего здесь высоты 15 м, вода поступает через эти отверстия в водохранилище, расположенное за плотиной. Затем, при наступлении отлива, лопасти рабочих колес турбин устанавливаются в такое положение, которое позволяет им работать на потоке воды, устремляющемся из водохранилища в море. Каждая из 24 турбин имеет мощность 10 тыс. кВт, следовательно, общая мощность ПЭС составляет 240 тыс. кВт; ее годовая выработка – 540 млн кВт ч. Вторая по времени строительства – Кислогубская ПЭС на Кольском полуострове (Россия). Она сооружена по проекту инженера Л. Бернштейна при помощи разработанного им же наплавного метода. Он заключается в том, что станцию монтируют на берегу, а затем буксируют по морю до места установки (в этом случае до губы Кислой на Мурманском побережье). Эксплуатацию ПЭС начали в 1968 г. Мощность ее составляет всего 400 кВт. В 1984 г. в омывающем берега и Канады, и США заливе Фанди Атлантического океана вошла в эксплуатацию третья по счету (и первая в Западном полушарии) ПЭС «Аннаполис». Ещё через два года в Китае заработала ПЭС «Цзянсян» мощностью 3,2 тыс. кВт. Несмотря на такое скромное начало, нельзя не учитывать того, что проектирование новых ПЭС ныне ведется во многих странах – в Канаде, во Франции, в Великобритании, Индии, Китае, Республике Корея, Австралии, России. Всего в 40 км к востоку от устья р. Ранс расположена довольно закрытая бухта Мон-Сен-Мишель. Здесь уже давно разработанный проект ПЭС предусматривает сооружение системы дамб и перемычек общей длиной более 30 км, которые должны отгородить от моря участок бухты площадью 500 км2. Система рассчитана на то, чтобы обеспечить поочередную почти круглосуточную работу гидротурбин. При этом мощность первой очереди ПЭС должна составить б млн кВт. Ещё одну аналогичную ПЭС проектируют в Бристольском заливе Англии. Проект предусматривает возведение здесь дамбы, которая должна отгородить от моря устье р. Северн, а затем создание при помощи специальных перемычек в этой отгороженной акватории двух бассейнов-водохранилищ. Такая конструкция позволила бы получать электроэнергию почти круглосуточно, а общая мощность 175 гидротурбин должна составить 7–9 млн кВт. Проект Бристольской ПЭС существует уже давно, но пока еще он не вышел из стадии научно-технических проработок. Ещё более грандиозный проект «обуздания» приливной энергии разработан для залива Фанди. Он предусматривает сооружение в самой глубине этого залива, врезающегося в сушу на 300 км и имеющего дополнительные заливы-ответвления, трех больших ПЭС суммарной мощностью 18 млн кВт! Реализация этого проекта, по-видимому, начнется с внутреннего залива Майнес, где приливы достигают средней высоты 13 м, а максимальной – почти 18 м. В зависимости от числа турбин ПЭС, которую здесь возведут, будет иметь установленную мощность от 3,8 млн до 5,3 млн кВт, причем почти всю получаемую электроэнергию предполагается продавать в США. По оценке, сооружение только этой ПЭС должно обойтись в 23 млрд долл., и именно это обстоятельство пока более всего тормозит реализацию проекта. Но едва ли не крупнейшие проекты развития приливной энергетики были созданы в России, которая по ресурсам такой энергии (17 % мировых) занимает ведущее место. При этом основные проекты сооружения гигантских ПЭС связаны с Белым и Охотским морями. Но в 1990-х гг., в условиях экономического кризиса, их осуществление более далеко от реализации, чем когда-либо прежде. Тем не менее по последним оценкам в России целесообразно строительство ПЭС в семи створах Баренцева, Белого и Охотского морей, на которых возможно получение 250 млрд кВт ч электроэнергии в год. К числу энергетических ресурсов Мирового океана относят также энергию волн, которую суммарно оценивают в 2,7 млрд кВт в год. Опыты показали, что ее надо использовать не у берега, куда волны приходят ослабленными, а в открытом море или в прибрежной зоне шельфа. В некоторых шельфовых акваториях волновая энергия достигает значительной концентрации: в США и Японии около 40 кВт на 1 м волнового фронта, а на западном побережье Великобритании– даже 80 кВт на 1 м. Использовать эту энергию, хотя и в местных масштабах (для освещения маяков и навигационных буев), уже начали в Японии и Норвегии, проектируют в США, Великобритании, Швеции, Австралии. Идею использования температурного градиента выдвигали еще в XIX в., но вплотную к её реализации подошли только в 70-х гг. XX в. Суть этой идеи заключается в том, чтобы использовать разницу в температуре поверхностных и глубинных вод Мирового океана в энергетических целях при помощи так называемых моретермальных электростанций, в которых теплая морская вода необходима в процессе превращения жидкого аммиака или фреона в пар, а холодная – для охлаждения. Для практического использования температурного градиента наиболее пригодны те районы Мирового океана, которые расположены между 20° с. ш. и 20° ю. ш., где температура воды у поверхности океана достигает, как правило, 27–28 °C, а на глубине 1 км составляет всего 4–5 °C. В 1970-х гг. в США, Японии, во Франции начали работы по программе «Преобразование термальной энергии океана» (ОТЕК). С тех пор были построены опытные гидротермальные электростанции в районах Гавайских островов (США), о. Науру (Японией), города Абиджан в Кот-д'Ивуаре (Францией). Некоторые оценки исходят из того, что со временем такие электростанции могли бы покрыть до 20 % мировой потребности в электроэнергии. Но, по-видимому, к ним надо относиться как к прогнозу на далекое будущее. V. Закрепление и проверка усвоения нового материала: Мы познакомились с топливно-энергетическим комплексом мира, дали общую характеристику нефтяной, газовой, угольной промышленности и электроэнергетике. Вопросы:: - Какие изменения и почему произошли в структуре топливно-энергетического баланса на протяжении ХХ века? - Назовите страны-лидеры добычи нефти (Россия, Саудовская Аравия, США) - Назовите страну лидера добычи газа (Россия) - Назовите страну лидера добычи угля (Китай) - Назовите страну лидера по выработки электроэнергии в Африке (ЮАР) - Назовите страны лидера по выработке атомной энергии (США, Франция, Япония, Германия, Россия, Великобритания). VI.Домашнее задание: проработать текст учебника (§42, 43), ответить на вопросы и тесты в конце параграфа. Вопрос для обсуждения на следующем уроке: каковы положительные и отрицательные последствия эксплуатации АЭС?
|
|