Технологическая карта урока математики 6 класс Решение уравнений

Автор публикации:

Дата публикации:

Краткое описание: ...


Технологическая карта урока


Данные об учителе Череватый Борис Васильевич , учитель высшей категории МБОУ « СОШ №6», г.Югорск

Предмет: математика Класс: 6

Учебник (УМК): Виленкин Н. Я., Жохов В. И., Чесноков А. С., Шварцбурд С. И. Математика 6 класс: Учебник для общеобразовательных учреждений. - М.: Мнемозина, 2008.


Тема урока: Решение уравнений

Тип урока: урок изучения нового материала


Характеристика учебных возможностей и предшествующих достижений учащихся класса, для которого проектируется урок:

Учащиеся владеют

регулятивными УУД:

- формулировать вопросы по теме на основе опорных (ключевых и вопросительных) слов (2 уровень);

познавательными УУД:

  • выделять и структурировать информацию, существенную для решения проблемы, под руководством учителя (1 уровень);

личностные УУД:

  • осуществлять рефлексию своего отношения к содержанию темы по заданному алгоритму (2 уровень).

У учащихся недостаточно сформированы:

коммуникативные УУД:

  • эффективно сотрудничать, осуществляя взаимопомощь и взаимоконтроль.


Цели урока как планируемые результаты обучения, планируемый уровень достижения целей:


проявлять интерес к новому содержанию, осознавая неполноту своих знаний

Познавательные УУД:

формулировать информационный запрос

Регулятивные УУД:

определять цели учебной деятельности

Ориентировоч-ный этап

• организовать самостоятельное планирование и выбор методов поиска информации

Беседа

фронталь-ная


Задает вопрос о способах получения нового знания, необходимого для ответа на возникшие вопросы, предлагает способ и последовательность действий

Называют известные им источники и методы поиска информации и знакомятся с предложенной учителем последовательностью действий

Регулятивные УУД:

планировать, т.е. составлять план действий с учетом конечного результата.


Поисково-исследователь-ский этап

организовать осмысленное восприятие новой информации

Рассказ


Фронталь-ная, индивидуальная

1. Сообщает 1 часть информации по теме урока

2. Предлагает ответить на вопросы, которые получены из 1 части рассказа.

3. Сообщает 2 часть информации. Предлагает записать выводы и решить уравнения.

4. Предлагает найти ответы на вопросы в ходе практической работы.

1. Слушают новый материал.


2. Делают пометки, называют вопросы и дают на них ответы.

3. Слушают, записывают и решают.

4. Формулируют новые вопросы по изучаемой теме.





Познавательные УУД:

извлекать необходимую информацию из прослушанных текстов;

структурировать знания;

Коммуникативные УУД:

вступать в диалог, с достаточной полнотой и точностью выражать свои мысли.

Предметные УУД:

давать определения новым понятиям темы;

называть способы решения уравнения.

Практический этап

обеспечить осмысленное усвоение и закрепление знаний

Практи-ческая работа

Индиви-дуальная, фронталь-ная

1. Дает задание для учащихся №1, организует обсуждение результатов ее выполнения.

2. Помогает впомнить понятия «уравнение», «равенство»; «корень уравнения».

3. Дает задание для учащихся № 2, организует обсуждение ее результатов.


1. Выполняют задания, сообщают о результатах.



2. Слушают объяснение учителя.


3. Выполняют задания № 2, сообщают о результатах.



Предметные УУД:

Различать способы решения уравнений, правильно формулировать ход решения уравнений, находить неизвестные компоненты, применять на практике полученные выводы

Познавательные УУД:

анализировать и сравнивать объекты, подводить под понятие;

Рефлексивно-оценочный этап

осмысление процесса и результата деятельности

Беседа,письменное высказывание

Индиви-дуальная, фронталь-ная

1. Предлагает оценить факт достижения цели урока: на все ли вопросы найдены ответы.

2. Предлагает каждому учащемуся высказать свое мнение в виде 1 фразы: телеграммы

1. Оценивают степень достижения цели, определяют круг новых вопросов.

2. Выборочно высказываются, делятся друг с другом мнением

Регулятивные УУД:

констатировать необходимость продолжения действий

Познавательные УУД:

решать различные виды уравнений

Коммуникативные УУД:

адекватно отображать свои чувства, мысли в речевом высказывании


Ход урока

Учитель приветствует учащихся, проверяет их готовность к уроку.

Учащиеся готовы к началу работы.

Этап актуализация знаний.


Учитель: Новые знания нам будет очень трудно осваивать без умения быстро и верно считать, поэтому, как всегда, начнем урок с устного счета:

1.Раскройте скобки: -3+(а + b – с + d);

5 – (а – d);

-4 ∙ (-2а + 5b - c).

2. Открываем тетради, записываем число, классная работа.


-Обратите внимание на записи.

5(x-3)=20; a-4+b; x+8=-15; 4b; 7,5s-3k; 5x=2x+6; 6m -1.


- Внимательно их изучите и ответьте на вопросы:

- На какие две группы можно разделить написанное?

- Как можно назвать каждую из групп?

- Интересна ли для нас 1 группа: выражения?

- А вторая? Почему?


– Кто догадался, какая тема сегодняшнего урока?



- Исходя из названия темы, давайте сформулируем цель нашего урока.


- Для того чтобы достичь цели урока, какие задачи нам надо поставить?





- Где можно узнать информацию по данной теме?




1.Решают в уме, один из учеников проговаривает ответ


2. Делают записи в тетради.


3.Учащиеся внимательно смотрят на записи, отвечая на вопросы:



  1. На уравнения и выражения

  2. Уравнения, выражения

  3. Нет

  4. Да, потому что уравнения можно решить.

4. Ребята объявляют тему урока и записывают в тетради: « Решение уравнений».

5. Формулируют цель: познакомиться с разными видами уравнений; научиться их решать.

6. Формулируют задачи:

  1. вспомнить основные понятия, свойства, которые можно отнести к уравнениям;

  2. изучить материал учебника по этой теме;

  3. внимательно слушать учителя;

  4. делать необходимые записи в тетрадях

7. Называют источники информации: учебник, учитель

Этап изучение нового материала

1.Подготовительный этап.

– А что значит «решить уравнение»?




– Итак, уравнение – это равенство. А где в жизни мы

встречаемся с понятием равенство?

Актуализация и постановка проблемы.

– Давайте посмотрим. Весы находятся в равно-

весии. Что произойдет, если с одной чаши весов убрать

груз?

– А что надо сделать, чтобы весы снова оказались в

равновесии?

– Это свойство «весов» нам еще пригодится.

- Давайте вернемся к началу нашего урока. В тетрадях запишем 1 уравнение и решим его. Какие существуют способы решения данного уравнения?

- Хорошо! Давайте сначала решим уравнение, применив распределительное свойство умножения:

1 способ

5(x-3) = 20

5x-15=20

5x=20+15

5x=35

x=35:5

x=7

- А сейчас по правилу отыскания неизвестных компонентов

2 способ

5(x-3) = 20

- Что неизвестно в уравнении?

- Как найти неизвестный множитель?

x-3=20:5

x-3=4

x=4+3

x=7

-Что мы получили в итоге?

- Что называется корнем уравнения?


-Число 7 является корнем уравнения x-3=4

и уравнения 5(x-3) = 20, так как 7-3=4 и 5(7-3)=20.


- Как из первого уравнения можно получить второе?


Мы с вами убедились, что корнем этих двух уравнений является одно и то же число. Поэтому:

Корни уравнения не изменяются, если обе части уравнения умножить или разделить на одно и тоже число , не равное нулю.


2. Снова вернемся к началу урока и теперь рассмотрим второе уравнение: x+8= - 15. Как его можно решить?

Это уравнение решается с использованием зависимостей между компонентами и результатами математических действий. Но изучение отрицательных чисел дает возможность решить эти уравнения иначе. (Весы)

- Вспомним, чему равна сумма противоположных чисел?

- Как можно получить в левой части уравнения только x?

- Рассмотрим решение этих уравнений.

x+8= - 15

x+8-8= -15-8

x= -23

- Мы видим, что слагаемые без переменной перешли из левой части уравнения в правую с противоположным знаком.

- А сейчас рассмотрим третье уравнение и решим его:5х=2х+6

- Чем данное уравнение отличается от предыдущего?

- Как его можно решить?

- Нужно получить такое уравнение, чтобы слагаемые с x были только слева. Что для этого необходимо сделать?

5х=2х+6

5x+ (-2x) = 2х+6+ (-2x)

5x+ (-2x) = 6

3x=6

x=6:3

x=2

- Хорошо! Давайте рассмотрим такой вопрос: Вы собираетесь за границу. О чем в первую очередь вы должны подумать, когда пересечете границу?

- Правильно, пересекая границу, вам обязательно надо поменять паспорт.

- Давайте представим, что знак «=» - это граница, а знак числа – это ваш паспорт. Когда мы пересекаем границу, меняем паспорт, то есть, если число переносим из одной части в другую, мы должны поменять знак.

Корни уравнения не изменяются, если какое – нибудь слагаемое перенести из одной части уравнения в другую, изменив при этом его знак.

1. Отвечают на вопросы:

1)Найти все значения

неизвестных, при которых оно обращается в верное равен-

ство или установить, что таких значений нет.


2) Называют возможные варианты, например, при взвешивании


3) Чаша с гирями перевесит.



4) Убрать гири.



5)Записывают уравнение в тетрадях, предлагают варианты решения.


6)Вспоминают распределительное свойство умножения и решают уравнение в тетрадях, комментируя вместе с учителем ход решения.









7)Отвечают на вопросы: Множитель


8)Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель






9) Корень уравнения x=7

Корнем уравнения называют то значение неизвестного, при котором это уравнение обращается в верное равенство





10) Это уравнение можно получить, разделив обе части данного уравнения на 5 или умножив обе части на 1\5.





11) Записывают в тетрадях вывод.










2. 1)Записывают уравнение в тетрадях, предлагают возможные варианты, решая уравнение





2) Нулю


3)Прибавить или отнять числа, противоположные числам в левой части.















4) Неизвестное есть и в правой и в левой части уравнения.


5) Предлагают варианты решения уравнения



6) Для этого надо к обеим частям уравнения прибавить (-2 x). Решают уравнение











7) Слушают, отвечают на вопросы.













8) Записывают в тетрадях вывод.



Этап первичное осмысление и закрепление знаний

1. - Принято при решении уравнений переносить слагаемые так, чтобы в левой части уравнения были неизвестные числа, а в правой - известные числа.

Решить №1314 и 1315 с комментированием на месте.

- Решают в тетрадях, один из учеников комментирует решение с места


Физпауза

Мы славно потрудились и славно отдохнем.

Учитель называет тела. Если называет искусственное тело, дети встают, а если естественное – сидят. Учитель читает: «Радуга, трактор, кукла, заяц, трава, дождь, воздушный шар, туман, самолёт, , солнце, медведь».


Выполняют упражнение

Этап закрепление изученного материала

Решить уравнение №1316( а- в) и №1318 (б) на доске и в тетрадях, проговаривая правила. Ответы: №1316 а) 16; б) -10; в) -8;

1318 б ) -5.



3. Решить самостоятельно уравнение №1316 (г) Ответ: 0.


1)Осмысливают и приступают применять новый способ решения на практике.

2)Делают записи в тетрадь. После выполнения задания сверяют с доской. Один из учеников решает у доски с комментарием.



3)Решают самостоятельно, сверяют с доской, один из учеников решает у доски.



Этап подведение итогов. Домашнее задание.

-Наш урок подходит к концу, с начала запишем домашнее задание, затем подведем итоги.

- На доске: Домашнее задание: п. 42, выучить правила; решить №1358(а; б; в; ) – на оценку «3», №1342(а;б;в) – на оценку «4», №1349– на оценку «5»

- Ваши вопросы по домашнему заданию.

- А теперь подведем итоги: Что мы хотели узнать? Что мы узнали? На все ли вопросы мы получили ответы?

- Давайте еще раз вспомним определение уравнения, корня уравнения.



- Итог урока каждый из вас подведет с помощью телеграммы; то есть в виде одного краткого предложения, которое выразит ваше отношение к уроку.

1) Ребята записывают домашнее задание в дневниках.


2) Просматривают домашнее задание, задают вопросы

3)Проводят самоанализ, отвечают на вопросы; вспоминают правила; определение уравнения, корня уравнения.

4) В конце своей работы каждый ученик пишет телеграмму. По желанию зачитывают классу