Рабочая программа по геометрии 9 класса

Автор публикации:

Дата публикации:

Краткое описание: ...


Муниципальное образовательное учреждение

«Шацкая средняя школа»








Рабочая программа по геометрии 9 класса

( УМК геометрия - Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. )


Учитель Хлыстова Г.П.







2016-2017 уч. год


Пояснительная записка.

Рабочая программа по геометрии 9 класса составлена на основе федерального компонента государственного стандарта основного общего образования, Программа по геометрии к учебнику для 7-9 классов общеобразовательных школ авторов Л.С. Атанасяна, В.Ф. Бутузова, С.Б. Кадомцева, Э.Г. Позняка и И.И. Юдиной.

Данная рабочая программа полностью отражает базовый уровень подготовки школьников по разделам программы. Она конкретизирует содержание тем образовательного стандарта и дает примерное распределение учебных часов по разделам курса.

Данная рабочая программа реализуется на основе следующих документов:

  1. Примерная программа по математике 5-9 классы. - М.: Просвещение, 2011.

  2. Геометрия. Рабочая программа к учебнику Л.С. Атанасяна и других. 7-9 классы. / В. Ф. Бутузов. – М. :Просвещение, 2011.

  3. Рабочие программы по геометрии: 7-11 классы / Сост. Н. Ф. Гаврилова. – М. : ВАКО, 2011.

Цели:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

Общая характеристика учебного предмета

Геометрия – один из важнейших компонентов математического образования, она необходима для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, развития пространственного воображения и интуиции, математической культуры и эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления и формирование понятия доказательства.

Место предмета

На изучение предмета отводится 2 часа в неделю, итого 68 часов за учебный год.


Личностные, метапредметные и предметные результаты освоения

Математическое образование является обязательной и неотъемлемой частью общего образования на всех ступенях школы. Обучение математике в основной школе направлено на достижение следующих целей:

  1. в направлении личностного развития:

  • формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;

  • развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;

  • формирование интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

  • воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;

  • формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

  • развитие интереса к математическому творчеству и математических способностей;

  1. в метапредметном направлении:

  • развитие представления о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;

  • формирование общих способов интеллектуальной деятельности, характерных для математике и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;

  1. в предметном направлении:

  • овладение математическими знаниями и умениями, необходимыми для продолжения образования, изучения смежных дисциплин, применения в повседневной жизни

  • создание фундамента для математического развития, формирование механизмов мышления, характерных для математической деятельности.


Результаты обучения

Результаты обучения представлены в Требованиях к уровню подготовки и задают систему итоговых результатов обучения, которых должны достичь все учащиеся, оканчивающие 9 класс, и достижение которых является обязательным условием положительной аттестации ученика за курс 9 класса. Эти требования структурированы по трем компонентам: знать, уметь, использовать приобретённые знания и умения в практической деятельности и повседневной жизни.

На протяжении изучения материала предполагается закрепление и отработка основных умений и навыков, их совершенствование, а также систематизация полученных ранее знаний, таким образом, решаются следующие задачи:

- введение терминологии и отработка умения ее грамотного использования;

- развитие навыков изображения планиметрических фигур и простейших геометрических конфигураций;

- совершенствование навыков применения свойств геометрических фигур как опоры при решении задач;

- формирование умения доказывать равенство данных треугольников;

- отработка навыков решения простейших задач на построение с помощью циркуля и линейки;

- формирование умения доказывать параллельность прямых с использованием соответствующих признаков, находить равные углы при параллельных прямых, что находит широкое применение в дальнейшем курсе геометрии;

- расширение знаний учащихся о треугольниках.

В ходе изучения материала планируется провести четыре контрольные работы по основным темам

Предпочтительные формы контроля знаний, умений и навыков – тематические контрольные работы, тестовые и самостоятельные работы





Содержание учебного предмета

В курсе геометрии 9-го класса формируется понятие вектора. Особое внимание уделяется выполнению операций над векторами в геометрической форме. Учащиеся дополняют знания о треугольниках сведениями, о методах вычисления элементов произвольных треугольниках, основанных на теоремах синусов и косинусов. Даются систематизированные сведения о правильных многоугольниках, об окружности, вписанной в правильный многоугольник и описанной. Особое место занимает решение задач на применение формул. Даются первые знания о движении, повороте и параллельном переносе. Серьезное внимание уделяется формированию умений рассуждать, делать простые доказательства, давать обоснования выполняемых действий. Параллельно закладываются основы для изучения систематических курсов стереометрии, физики, химии и других смежных предметов.

Курс характеризуется рациональным сочетанием логической строгости и геометрической наглядности. Увеличивается теоретическая значимость изучаемого материала, расширяются внутренние логические связи курса, повышается роль дедукции, степень абстрактности изучаемого материала. Учащиеся овладевают приемами аналитико-синтетической деятельности при доказательстве теорем и решении задач. Систематическое изложение курса позволяет продолжить работу по формированию представлений учащихся о строении математической теории, обеспечивает развитие логического мышления школьников. Изложение материала характеризуется постоянным обращением к наглядности, использованием рисунков и чертежей на всех этапах обучения и развитием геометрической интуиции на этой основе. Целенаправленное обращение к примерам из практики развивает умения учащихся вычленять геометрические факты, формы, и отношения.

Образовательные и воспитательные задачи обучения геометрии должны решаться комплексно с учетом возрастных особенностей обучающихся, специфики геометрии как учебного предмета, определяющего её роль и место в общей системе школьного обучения и воспитания. При планировании уроков следует иметь в виду, что теоретический материал осознается и усваивается преимущественно в процессе решения задач. Организуя решение задач, целесообразно шире использовать дифференцированный подход к учащимся. Важным условием правильной организации учебно-воспитательного процесса является выбор учителем рациональной системы методов и приемов обучения, сбалансированное сочетание традиционных и новых методов обучения, оптимизированное применение объяснительно-иллюстрированных и эвристических методов, использование технических средств, ИКТ -компонента. Учебный процесс необходимо ориентировать на рациональное сочетание устных и письменных видов работы, как при изучении теории, так и при решении задач. Внимание учителя должно быть направлено на развитие речи учащихся, формирование у них навыков умственного труда – планирование своей работы, поиск рациональных путей её выполнения, критическую оценку результатов.


В ходе освоения содержания курса учащиеся получают возможность:

  • развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;

  • развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

  • сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.


В ходе преподавания математики в 9 классе, работы над формированием у учащихся, перечисленных в программе знаний и умений, следует обратить внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

-работы с математическими моделями, приемами их построения и исследования;

-методами исследования реального мира, умения действовать в нестандартных ситуациях;

-решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;

-исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

-ясного, точного, грамотного изложения своих мыслей в устной и письменной речи;

-использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации;

-проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;

-поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.

Формирование УУД:

Регулятивные УУД:

  • определять цель деятельности на уроке с помощью учителя и самостоятельно;

  • учиться совместно с учителем обнаруживать и формулировать учебную проблему;

  • учиться планировать учебную деятельность на уроке;

  • высказывать свою версию, пытаться предлагать способ её проверки (на основе продуктивных заданий в учебнике);

  • работая по предложенному плану, использовать необходимые средства (учебник, компьютер и инструменты);

  • определять успешность выполнения своего задания в диалоге с учителем.

Средством формирования регулятивных действий служат технология проблемного диалога на этапе изучения нового материала и технология оценивания образовательных достижений (учебных успехов).

Познавательные УУД:

    • ориентироваться в своей системе знаний: понимать, что нужна дополнительная информация (знания) для решения учебной задачи в один шаг;

    • делать предварительный отбор источников информации для решения учебной задачи;

    • добывать новые знания: находить необходимую информацию, как в учебнике, так и в предложенных учителем словарях, справочниках и интернет-ресурсах;

    • добывать новые знания: извлекать информацию, представленную в разных формах (текст, таблица, схема, иллюстрация и др.);

перерабатывать полученную информацию: наблюдать и делать самостоятельные выводы. Средством формирования познавательных действий служит учебный материал и задания учебника, обеспечивающие первую линию развития - умение объяснять мир.

Коммуникативные УУД:

  • доносить свою позицию до других: оформлять свою мысль в устной и письменной речи (на уровне предложения или небольшого текста);

  • слушать и понимать речь других;

  • выразительно читать и пересказывать текст;

  • вступать в беседу на уроке и в жизни;

  • совместно договариваться о правилах общения и поведения в школе и следовать им;

  • учиться выполнять различные роли в группе (лидера, исполнителя, критика).

Средством формирования коммуникативных действий служат технология проблемного диалога (побуждающий и подводящий диалог), технология продуктивного чтения и организация работы в малых группах.


Требования к уровню подготовки учащихся.

В результате изучения геометрии выпускник основной школы должен

знать:

- основные понятия и определения геометрических фигур по программе;

- формулировки основных теорем и их следствий;

уметь:

- пользоваться геометрическим языком для описания предметов окружающего мира;

- распознавать геометрические фигуры, различать их взаимное расположение;

- изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразование фигур;

- решать задачи на вычисление геометрических величин, применяя изученные свойства фигур и формулы;

- решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический аппарат и соображения симметрии;

- проводить доказательные рассуждения при решении задач, используя известные теоремы и обнаруживая возможности их применения;

- решать простейшие планиметрические задачи в пространстве;

- владеть алгоритмами решения основных задач на построение; проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;

- вычислять значения геометрических величин ( длин, углов, площадей, объемов) : для углов от 00 до 1800 определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них; находить стороны. Углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- описания реальных ситуаций на языке геометрии;

- решения практических задач, связанных с нахождением геометрических величин ( используя при необходимости справочники и технические средства) ;

- построений геометрическими инструментами ( линейка, угольник, циркуль, транспортир);

- владения практическими навыками использования геометрических инструментов для изображения фигур, а также нахождения длин отрезков и величин углов.



Характеристика основных содержательных линий

1. Вводное повторение (2 ч + 1 ч к/р)

Повторение курса 7-8 классов.

Знать и понимать:

понятия: медиана, биссектриса, высота, треугольника, параллелограмм, трапеция, ромб, квадрат.

Уметь:

выполнять задачи из разделов курса VIII класса, используя теорию: теорема Пифагора, свойство средней линии треугольника, формулы вычисления площади треугольника; свойства, признаки параллелограмма, ромба, прямоугольника.

УУД

Коммуникативные:

Учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве; контролировать действия партнёра.

Регулятивные:

Вносить необходимые коррективы в действие после его завершения на основе учёта характера сделанных ошибок; различать способ и результат действия.

Познавательные:

Ориентироваться на разнообразие способов решения задач. Строить речевое высказывание в устной и письменной форме.

2. Векторы (8 ч )

Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число.

Цель: учить обучающихся выполнять действия над векторами как направленными отрезками.

Знать и понимать:

- понятия вектора, нулевого вектора, длины вектора, коллинеарных векторов, равенства векторов;

- операции над векторами в геометрической форме (правило треугольника, правило параллелограмма, правило многоугольника, правило построения разности векторов и вектора, получающегося при умножении вектора на число); законы сложения векторов, умножения вектора на число;

- формулу для вычисления средней линии трапеции.

Уметь:

- откладывать вектор от данной точки;

- пользоваться правилами при построении суммы, разности векторов; вектора, получающегося

при умножении вектора на число;

- применять векторы к решению задач;

- находить среднюю линию треугольника;


  • Вектор определяется как направленный отрезок и действия над векторами вводятся так, как это принято в физике, т. е. как действия с направленными отрезками. Основное внимание должно быть уделено выработке умений выполнять операции над векторами (складывать векторы по правилам треугольника и параллелограмма, строить вектор, равный разности двух данных векторов, а также вектор, равный произведению данного вектора на данное число).

УУД

Коммуникативные:

Контролировать действия партнёра. Договариваться и приходить к общему решению в совместной деятельности, в том числе в ситуации столкновения интересов.

Регулятивные:

Различать способ и результат действия. Оценивать правильность выполнения действия на уровне адекватной ретроспективной оценки.

Познавательные:

Владеть общим приёмом решения задач. Использовать поиск необходимой информации для выполнения заданий с использованием учебной литературы


3. Метод координат (10 ч)

Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Простейшие задачи в координатах. Уравнения окружности и прямой. Применение векторов и координат при решении задач.

Цель:

познакомить с использованием векторов и метода координат при решении геометрических задач, учить применять векторы к решению задач

Знать и понимать:

- понятие координат вектора;

- лемму и теорему о разложении вектора по двум неколлинеарным векторам;

- правила действий над векторами с заданными координатами;

- понятие радиус-вектора точки;

- формулы координат вектора через координаты его конца и начала, координат середины отрезка,

длины вектора и расстояния между двумя точками;

- уравнения окружности и прямой, осей координат.

Уметь:

- раскладывать вектор по двум неколлинеарным векторам;

- находить координаты вектора,

- выполнять действия над векторами, заданными координатами;

- решать простейшие задачи в координатах и использовать их при решении более сложных задач;

- записывать уравнения прямых и окружностей, использовать уравнения при решении задач;

- строить окружности и прямые, заданные уравнениями.


  • На примерах показывается, как векторы могут применяться к решению геометрических задач. Демонстрируется эффективность применения формул для координат середины отрезка, расстояния между двумя точками, уравнений окружности и прямой в конкретных геометрических задачах, тем самым дается представление об изучении геометрических фигур с помощью методов алгебры.

УУД

Коммуникативные:

Учитывать различные мнения и стремиться к координации различных позиций в сотрудничестве.

Контролировать действия партнёра.

Регулятивные:

Учитывать правило в планировании и контроле способа решения. Вносить необходимые коррективы в действие после его завершения на основе учёта характера сделанных ошибок.


Познавательные:

Владеть общим приёмом решения задач. Проводить сравнение, сериацию и классификацию по заданным критериям.



4. Соотношения между сторонами и углами треугольника

(11 ч)

Скалярное произведение векторов. Синус, косинус и тангенс угла. Теоремы синусов и косинусов. Решение треугольников. Скалярное произведение векторов и его применение в геометрических задачах.

Цель: познакомить учащихся с основными алгоритмами решения произвольных треугольников.

Знать и понимать:

- понятия синуса, косинуса и тангенса для углов от 0 до 180;

- основное тригонометрическое тождество;

- формулы приведения;

- формулы для вычисления координат точки; соотношения между сторонами и углами

треугольника:

- теорему о площади треугольника;

- теоремы синусов и косинусов и измерительные работы, основанные на использовании этих

теорем;

- определение скалярного произведения векторов;

- условие перпендикулярности ненулевых векторов;

- выражение скалярного произведения в координатах и его свойства.

- методы решения треугольников.

Уметь:

- объяснять, что такое угол между векторами;

- применять скалярное произведение векторов при решении геометрических задач.

- строить углы;

- применять тригонометрический аппарат при решении задач, вычислять координаты точки с

помощью синуса, косинуса и тангенса угла;

- вычислять площадь треугольника по двум сторонам и углу между ними;

- решать треугольники.


  • Синус и косинус любого угла от 0 до 180 вводятся с помощью единичной полуокружности, доказываются теоремы синусов и косинусов и выводится еще одна формула площади треугольника (половина произведения двух сторон на синус угла между ними). Этот аппарат применяется к решению треугольников. Скалярное произведение векторов вводится как в физике (произведение длин векторов на косинус угла между ними). Рассматриваются свойства скалярного произведения и его применение при решении геометрических задач. Основное внимание следует уделить выработке прочных навыков в применении тригонометрического аппарата при решении геометрических задач.

УУД

Коммуникативные:

Учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве.

Регулятивные:

Вносить необходимые коррективы в действие после его завершения на основе учёта характера сделанных ошибок.

Познавательные:

Владеть общим приёмом решения задач. Ориентироваться на разнообразие способов решения задач.


5. Длина окружности и площадь круга (12 ч)


Правильные многоугольники. Окружности, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности. Площадь круга.

Цель:расширить и систематизировать знания учащихся об окружностях и многоугольниках.

Знать и понимать:

- определение правильного многоугольника;

- теоремы об окружности, описанной около правильного многоугольника, и окружности,

вписанной в правильный многоугольник;

- формулы для вычисления угла, площади и стороны правильного многоугольника и радиуса

вписанной в него окружности;

- формулы длины окружности и дуги окружности;

- формулы площади круга и кругового сектора;


Уметь:

- вычислять площади и стороны правильных многоугольников, радиусов вписанных и

описанных окружностей;

- строить правильные многоугольники с помощью циркуля и линейки;

- вычислять длину окружности, длину дуги окружности;

- вычислять площадь круга и кругового сектора.


  • В начале темы дается определение правильного многоугольника и рассматриваются теоремы об окружностях, описанной около правильного многоугольника и вписанной в него. Необходимо рассмотреть понятия длины окружности и площади круга и формулы для их вычисления. С помощью описанной окружности решаются задачи о построении правильного шестиугольника и правильного 2 n -угольника, если дан правильный n-угольник. Формулы, выражающие сторону правильного многоугольника и радиус вписанной в него окружности через радиус описанной окружности, используются при выводе формул длины окружности и площади круга. Вывод опирается на интуитивное представление о пределе: при неограниченном увеличении числа сторон правильного многоугольника, вписанного в окружность, его периметр стремится к длине этой окружности, а площадь - к площади круга, ограниченного окружностью.

УУД

Коммуникативные:

Контролировать действия партнёра.

Регулятивные:

Учитывать правило в планировании и контроле способа решения.

Познавательные:

Владеть общим приёмом решения задач. Строить речевое высказывание в устной и письменной форме.


6. Движения (8 ч)

Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрии. Параллельный перенос. Поворот. Наложения и движения.


Цель:познакомить учащихся с понятием движения и его свойствами, с основными видами движений, со взаимоотношениями наложений и движений.

Знать и понимать:

- определение движения и его свойства;

-примеры движения: осевую и центральную симметрии, параллельный перенос и поворот;

- при движении любая фигура переходит в равную ей фигуру;

- эквивалентность понятий наложения и движения

Уметь:

- объяснять, что такое отображение плоскости на себя;

- строить образы фигур при симметриях, параллельном переносе и повороте;

- решать задачи с применением движений.


  • Движение плоскости вводится как отображение плоскости на себя, сохраняющее расстояние между точками. При рассмотрении видов движений основное внимание уделяется построению образов точек, прямых, отрезков, треугольников при осевой и центральной симметриях, параллельном переносе, повороте. На эффектных примерах показывается применение движений при решении геометрических задач. Понятие наложения относится в данном курсе к числу основных понятий. Доказывается, что понятия наложения и движения являются эквивалентными: любое наложение является движением плоскости и обратно. Изучение доказательства не является обязательным, однако следует рассмотреть связь понятий наложения и движения.

УУД

Коммуникативные:

Контролировать действия партнёра.

Регулятивные:

Учитывать правило в планировании и контроле способа решения.

Познавательные:

Владеть общим приёмом решения задач. Строить речевое высказывание в устной и письменной форме.



7. Начальные сведения из стереометрии (8 ч)

Предмет стереометрии. Геометрические тела и поверхности. Многогранники: призма, параллелепипед, пирамида, формулы для вычисления их объемов. Тела и поверхности вращения: цилиндр, конус, сфера, шар, формулы для вычисления их площадей поверхностей и объемов.

Цель: дать начальное представление о телах и поверхностях в пространстве; познакомить учащихся с основными формулами для вычисления площадей поверхностей и объемов тел.

Знать и понимать:

- что изучает стереометрия;

- иметь представление о телах и поверхностях в пространстве;

- знать формулы для вычисления площадей поверхностей и объемов тел.

Уметь:

выполнять чертежи геометрических тел.


  • Рассмотрение простейших многогранников (призмы, параллелепипеда, пирамиды), а также тел и поверхностей вращения (цилиндра, конуса, сферы, шара) проводится на основе наглядных представлений. Без привлечения аксиом стереометрии. Формулы для вычисления объемов указанных тел выводятся на основе принципа Кавальери, формулы для вычисления площадей боковых поверхностей цилиндра и конуса получаются с помощью разверток этих поверхностей, формула площади сферы приводится без обоснования.

УУД

Коммуникативные:

Учиться выполнять различные роли в группе (лидера, исполнителя, критика).

Регулятивные:

Учитывать правило в планировании и контроле способа решения; учиться планировать учебную деятельность на уроке.

Познавательные:

Владеть общим приёмом решения задач. Строить речевое высказывание в устной и письменной форме.


8. Об аксиомах геометрии (2 ч)

Беседа об аксиомах по геометрии.

Цель:дать более глубокое представление о системе аксиом планиметрии и аксиоматическом методе.

Знать и понимать:

- аксиоматическое построение геометрии;

- основные аксиомы евклидовой геометрии, геометрии Лобачевского.


  • В данной теме рассказывается о различных системах аксиом геометрии, в частности о различных способах введения понятия равенства фигур.

УУД

Коммуникативные:

Доносить свою позицию до других: оформлять свою мысль в устной и письменной речи.

Регулятивные:

Осуществлять итоговый и пошаговый контроль по результату.

Познавательные:

Проводить сравнение, сериацию и классификацию по заданным критериям.


9. Повторение. Решение задач (6 ч)

Закрепление знаний, умений и навыков, полученных на уроках по данным темам (курс геометрии 9 класса). Умение работать с различными источниками информации.


Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс геометрии 9 класса. Подготовка к ГИА.

Уметь:

- отвечать на вопросы по изученным в течение года темам;

- применять все изученные теоремы при решении задач;

- решать тестовые задания базового уровня;

- решать задачи повышенного уровня сложности.


УУД

Коммуникативные:

Учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве. Слушать других, пытаться принимать другую точку зрения, быть готовым изменить свою точку зрения.

Регулятивные:

Осуществлять итоговый и пошаговый контроль по результату. Вносить необходимые коррективы в действие после его завершения на основе учёта характера сделанных ошибок.


Познавательные:

Проводить сравнение, сериацию и классификацию по заданным критериям. Анализировать условия и требования задач.







Тематическое планирование курса


Вводное повторение– 2ч

Векторы– 8ч


Метод координат -10ч


Соотношения между сторонами и углами треугольника. Скалярное произведение векторов– 12ч


Длина окружности и площадь круга– 11ч


Движения– 7ч


Начальные сведения из стереометрии– 7ч


Повторение курса планиметрии - 11ч











Планируемые результаты изучения курса геометрии в 7-9 классах

Наглядная геометрия

Выпускник научится:

  1. распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;

  2. распознавать развертки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;

  3. определять по линейным размерам развертки фигуры линейные размеры самой фигуры и наоборот;

  4. вычислять объем прямоугольного параллелепипеда.

Выпускник получит возможность:

  1. вычислять объемы пространственныхгеометрических фигур, составленных из прямоугольных параллелепипедов;

  2. углубить и развить представления о пространственныхгеометрических фигурах;

  3. применять понятие развертки для выполнения практических расчетов.

Геометрические фигуры

Выпускник научится:

  1. пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;

  2. распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;

  3. находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0 до 1800,

применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие,

симметрии, поворот, параллельный перенос);

  1. оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов;

  2. решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;

  3. решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;

  4. решать простейшие планиметрические задачи в пространстве;

Выпускник получит возможность:

  1. овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;

  2. приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;

  3. овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;

  4. научиться решать задачина построение методом геометрических мест точеки методом подобия;

  5. приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ;

  6. приобрести опыт выполнения проектов по темам: «Геометрические преобразования на плоскости», «Построение отрезков по формуле».

Измерение геометрических величин

Выпускник научится:

  1. использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;

  2. вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окружности, формулы площадей фигур;

  3. вычислять площади треугольников, прямоугольников, параллелограммов, трапеций, кругов и секторов;

  4. вычислятьдлину окружности, длину дуги окружности;

  5. решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности,формул площадей фигур;

  6. решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).

Выпускник получит возможность:

  1. вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;

  2. вычислять площади многоугольников, используя отношения равновеликости и равносоставленности;

  3. приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении задач на вычисление площадей многоугольников.

Координаты

Выпускник научится:

  1. вычислять длину отрезка пот координатам его концов; вычислять координаты середины отрезка;

  2. использовать координатный метод для изучения свойств прямых и окружностей.

Выпускник получит возможность:

  1. овладеть координатным методом решения задач на вычисление и доказательство;

  2. приобрести опыт использования компьютерных программ для анализа частных случаев взаимного расположения окружностей и прямых;

  3. приобрести опыт выполнения проектов на тему «Применение координатного метода при решении задач на вычисление и доказательство».

Векторы

Выпускник научится:

  1. оперировать с векторами: находить сумму и разность двух векторов, заданных геометрически, находить вектор, равный произведению заданного вектора на число;

  2. находить для векторов, заданных координатами: длину вектора, координаты суммы и разности двух и более векторов, координаты произведения вектора на число, применяя при необходимости сочетательный, переместительный и распределительный законы;

  3. вычислять скалярное произведение векторов, находить угол между векторами, устанавливать перпендикулярность прямых.

Выпускник получит возможность:

  1. овладеть векторным методом для решения задач на вычисление и доказательство;

  2. приобрести опыт выполнения проектов на тему «Применение векторного метода при решении задач на вычисление и доказательство».