Рабочая программа по геометрии 8 класс Атанасян.

Автор публикации:

Дата публикации:

Краткое описание: ...


Муниципальное общеобразовательное учреждение

«Средняя общеобразовательная школа №2 города Кувандыка

Кувандыкского района Оренбургской области»




Рассмотрено

на заседании ШМО

Протокол № _________

от «____»________201 г.

Руководитель ШМО

_________Ф.М.Чеботарева


Согласовано

Зам. директора по УВР

_________Т.М.Артюхова


Утверждаю

Приказ № _________

от «____»_______201 г.

Директор СОШ №2

_________Е.Л.Рассказова








РАБОЧАЯ ПРОГРАММА

по учебному курсу «Геометрия» в 8 классе

Базовый уровень













Ф.М. Чеботарева

учитель математики

высшая квалификационная категория











2011/2012 учебный год


ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Геометрия – один из важнейших компонентов математического образования, необходимая для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

Рабочая программа учебного курса геометрии для 8 класса основной общеобразовательной школы составлена в соответствии с требованиями федерального компонента государственного стандарта основного общего образования, на основе примерных программ основного общего образования по математике (базовый уровень) и авторской программы курса геометрии для учащихся 7 – 9 классов общеобразовательных учреждений (составитель Т.А. Бурмистрова, 2008 г.).

Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и дает распределение учебных часов по разделам курса. Содержание программы направлено на освоение учащимися знаний, умений и навыков на базовом уровне, что соответствует Образовательной программе школы. Она включает все темы, предусмотренные федеральным компонентом государственного образовательного стандарта основного общего образования по математике. На изучение геометрии отводится 2 часа в неделю, всего 68 часов в год, в том числе на контрольные работы 5 часов.

Учебный процесс ориентирован на: рациональное сочетание устных и письменных видов работы как при изучении теории, так и при решении задач; сбалансированное сочетание традиционных и новых методов обучения; оптимизированное применение объяснительно-иллюстративных и эвристических методов; использование современных технических средств обучения.

Преобладающей формой текущего контроля выступает письменный (тесты, самостоятельные и контрольные работы) и устный опрос.

Для реализации учебной программы используется учебно-методический комплект, включающий:

1. Геометрия. 7 – 9 классы: учебник для общеобразовательных учреждений / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев, Э.Г. Позняк, И.И. Юдина. – М.: Прсвещение, 2010.

2. Зив Б.Г. Геометрия. Дидактические материалы. 8 класс / Б.Г. Зив, В.М. Мейлер. – М.: Просвещение, 2010.

3. Мищенко Т.М. Геометрия. Тематические тесты. 8 класс / Т.М. Мищенко, А.Д. Блинков. – М.: Просвещение, 2010.

4. Атанасян Л.С. Геометрия. Рабочая тетрадь. 8 класс / Л.С. Атанасян, В.Ф. Бутузов, Ю.А. Глазков, И.И. Юдина. – М.: Просвещение, 2010.

5. Атанасян Л.С. Изучение геометрии в 7 – 9 классах: пособие для учителя – М.: Просвещение, 2010.

Цель изучения курса: систематическое изучение свойств геометрических фигур на плоскости, формирование пространственных представлений, развитие логического мышления и подготовка аппарата, необходимого для изучения смежных дисциплин и курса стереометрии в старших классах.

Задачи курса:

- научить пользоваться геометрическим языком для описания предметов;

- начать изучение многоугольников и их свойств, научить находить их площади;

- ввести теорему Пифагора и научить применять её при решении прямоугольных треугольников;

- ввести тригонометрические понятия синус, косинус и тангенс угла в прямоугольном треугольнике научить применять эти понятия при решении прямоугольных треугольников;

- ввести понятие подобия и признаки подобия треугольников, научить решать задачи на применение признаков подобия;

- ознакомить с понятием касательной к окружности.

СОДЕРЖАНИЕ ОБУЧЕНИЯ

1. Четырехугольники (20 ч)

Определение четырехугольника. Параллелограмм и его свойства. Признаки параллелограмма. Прямоугольник, ромб, квадрат и их свойства. Теорема Фалеса. Средняя линия треугольника. Трапеция. Средняя линия трапеция. Пропорциональные отрезки. Основная цель –дать учащимся систематизированные сведения о четырехугольниках и их свойствах.

2.Теорема Пифагора (18 ч)

Синус, косинус и тангенс острого угла прямоугольного треугольника. Теорема Пифагора. Неравенство треугольника. Перпендикуляр и наклонная. Соотношение между сторонами и углами в прямоугольном треугольнике. Значения синуса, косинуса и тангенса некоторых углов.

Основная цель – сформировать аппарат решения прямоугольных треугольников, необходимый для вычисления элементов геометрических фигур на плоскости и в пространстве.

3.Декартовы координаты на плоскости.

Прямоугольная система координат на плоскости. Координаты середины отрезка. Расстояние между точками. Уравнения прямой и окружности. Координаты пересечения прямых. График линейной функции. Пересечение прямых с окружностью. Синус, косинус, тангенс углов от 0° до 180°
Основная цель – обобщить и систематизировать представления учащихся о декартовых координатах; развить умение применять алгебраический аппарат при решении геометрических задач.

4.Движение (7 ч)

Движение и его свойства. Симметрия относительно точки и прямой. Поворот. Параллельный перенос и его свойства. Понятие о равенстве фигур.

Основная цель – познакомить учащихся с примерами геометрических преобразований..

5.Векторы (9 ч)

Вектор. Абсолютная величина и направление вектора. Равенство векторов. Координаты вектора. Сложение векторов и его свойства. Умножение вектора на число [Коллинеарные векторы] Скалярное произведение векторов. Угол между векторами. [Проекция на ось. Разложение вектора по координатным осям.]

Основная цель – познакомить учащихся с примерами геометрических преобразований.

6. Повторение. Решение задач (4 ч)







ТРЕБОВАНИЯ К МАТЕМАТИЧЕСКОЙ ПОДГОТОВКЕ УЧАЩИХСЯ

В результате изучения геометрии ученик должен уметь

  • пользоваться языком геометрии для описания предметов окружающего мира;

  • распознавать геометрические фигуры, различать их взаимное расположение;

  • распознавать на чертежах и моделях геометрические фигуры (прямоугольник, параллелограмм, ромб, квадрат); изображать указанные геометрические фигуры;

  • выполнять чертежи по условию задачи;

  • владеть практическими навыками использования геометрических инструментов для изображения фигур, а также для нахождения длин отрезков и величин углов;

  • уметь решать несложные задачи на вычисление геометрических величин (длин, углов), опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический аппарат;

  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

  • владеть алгоритмами решения основных задач на построение;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания реальных ситуаций на языке геометрии;

  • решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

  • построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).



ПЛАНИРОВАНИЕ УЧЕБНОГО МАТЕРИАЛА

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

Алгебра

8 класс

(3 ч в неделю, всего 102 ч)

1. Рациональные дроби (23 ч)

Рациональная дробь. Основное свойство дроби, сокращение дробей. Сложение, вычитание, умножение и деление дробей. Тождественные преобразования рациональных выражений. Функция [pic] и ее график. Представление дроби в виде суммы дробей.

Основная цель – выработать умение выполнять тождественные преобразования рациональных выражений.

Изучение темы начинается с введения понятий о целом и дробном выражении. Так как действия с рациональными дробями существенным образом опираются на действия с многочленами, то в начале темы необходимо повторить с учащимися преобразования целых выражений.

Главное место в данной теме занимают алгоритмы действий с дробями. Учащиеся должны понимать, что сумму, разность, произведение и частное дробей всегда можно представить в виде дроби. Основное свойство дроби и алгоритмы действий с дробями получают теоретическое обоснование.

Приобретаемые в данной теме умения выполнять сложение, вычитание, умножение и деление дробей являются опорными в преобразованиях дробных выражений. Поэтому им следует уделить особое внимание. Нецелесообразно переходить к комбинированным заданиям на все действия с дробями прежде, чем будут усвоены основные алгоритмы. Задания на все действия с дробями не должны быть излишне громоздкими и трудоемкими.

При нахождении значений дробей даются задания на вычисления с помощью калькулятора. В данной теме расширяются сведения о статистических характеристиках. Вводится понятие среднего гармонического ряда положительных чисел.

Изучение темы завершается рассмотрением свойств и графика функции [pic] .

2. Квадратные корни (19 ч)

Понятие об иррациональном числе. Общие сведения о действительных числах. Квадратный корень. Понятие о нахождении приближенного значения квадратного корня. Свойства квадратных корней. Вынесение множителя из-под знака корня и внесение множителя под знак корня. Освобождение от иррациональности в знаменателе в выражениях вида [pic] . Тождественные преобразования выражений, содержащих квадратные корни. Функция [pic] , ее свойства и график.

Основная цель – систематизировать сведения о рациональных числах и дать представление об иррациональных числах, расширив тем самым понятие числа; выработать умение выполнять преобразования выражений, содержащих квадратные корни.

В данной теме учащиеся получают начальное представление о понятии действительного числа. С этой целью обобщаются известные учащимся сведения о рациональных числах. Для введения понятия иррационального числа используется интуитивное представление о том, что каждый отрезок имеет длину и потому каждой точке координатной прямой соответствует некоторое число. Показывается, что существуют точки, не имеющие рациональных абсцисс.

При введении понятия корня полезно ознакомить учащихся с нахождением корней с помощью калькулятора.

Основное внимание уделяется понятию арифметического квадратного корня и свойствам арифметических квадратных корней. Доказываются теоремы о корне из произведения и дроби, а также тождество [pic] , которые получают применение в преобразованиях выражений, содержащих квадратные корни. Специальное внимание уделяется освобождению от иррациональности в знаменателе дроби в выражениях вида [pic] [pic] . Умение преобразовывать выражения, содержащие корни, часто используется как в самом курсе алгебры, так и в курсах геометрии, алгебры и начал анализа.

Продолжается работа по развитию функциональных представлений учащихся. Рассматриваются функция [pic] , ее свойства и график. При изучении функции [pic] показывается ее взаимосвязь с функцией [pic] , где x ≥ 0.

3. Квадратные уравнения (22 ч)

Квадратное уравнение. Формула корней квадратного уравнения. Теорема Виета. Решение рациональных уравнений. Решение задач, приводящих к квадратным уравнениям и простейшим рациональным уравнениям.

Основная цель – выработать умения решать квадратные уравнения и простейшие рациональные уравнения и применять их к решению задач.

Изложение материала начинается с решения неполных квадратных уравнений. Этот материал систематизируется. Рассматриваются алгоритмы решения неполных квадратных уравнений различного вида.

Основное внимание следует уделить решению уравнений вида ах2 + bх + с = 0, где а ≠ 0, с использованием формулы корней. В данной теме учащиеся знакомятся с формулами Виета, выражающими связь между корнями квадратного уравнения и его коэффициентами. Они используются в дальнейшем при доказательстве теоремы о разложении квадратного трехчлена на линейные множители.

Учащиеся овладевают способом решения дробных рациональных уравнений, который состоит в том, что решение таких уравнений сводится к решению соответствующих целых уравнений с последующим исключением посторонних корней.

Изучение данной темы позволяет существенно расширить аппарат уравнений, используемых для решения текстовых задач.

4. Неравенства (20 ч)

Числовые неравенства и их свойства. Почленное сложение и умножение числовых неравенств. Погрешность и точность приближения. Линейные неравенства с одной переменной и их системы.

Основная цель – ознакомить учащихся с применением неравенств для оценки значений выражений, выработать умение решать линейные неравенства с одной переменной и их системы.

Свойства числовых неравенств составляют ту базу, на которой основано решение линейных неравенств с одной переменной. Теоремы о почленном сложении и умножении неравенств находят применение при выполнении простейших упражнений на оценку выражений по методу границ. Вводятся понятия абсолютной погрешности и точности приближения, относительной погрешности.

Умения проводить дедуктивные рассуждения получают развитие как при доказательствах указанных теорем, так и при выполнении упражнений на доказательства неравенств.

В связи с решением линейных неравенств с одной переменной дается понятие о числовых промежутках, вводятся соответствующие названия и обозначения. Рассмотрению систем неравенств с одной переменной предшествует ознакомление учащихся с понятиями пересечения и объединения множеств.

При решении неравенств используются свойства равносильных неравенств, которые разъясняются на конкретных примерах. Особое внимание следует уделить отработке умения решать простейшие неравенства вида ах > b, ах < b, остановившись специально на случае, когда а < 0.

В этой теме рассматривается также решение систем двух линейных неравенств с одной переменной, в частности таких, которые записаны в виде двойных неравенств.

5. Степень с целым показателем (11 ч)

Степень с целым показателем и ее свойства. Стандартный вид числа. Приближенный вычисления.

Основная цель – выработать умение применять свойства степени с целым показателем в вычислениях и преобразованиях, сформировать начальные представления о сборе и группировке статистических данных, их наглядной интерпретации.

В этой теме формулируются свойства степени с целым показателем. Метод доказательства этих свойств показывается на примере умножения степеней с одинаковыми основаниями. Дается понятие о записи числа в стандартном виде. Приводятся примеры использования такой записи в физике, технике и других областях знаний.

Учащиеся получают начальные представления об организации статистических исследований. Они знакомятся с понятиями генеральной и выборочной совокупности. Приводятся примеры представления статистических данных в виде таблиц частот и относительных частот. Учащимся предлагаются задания на нахождение по таблице частот таких статистических характеристик, как среднее арифметическое, мода, размах. Рассматривается вопрос о наглядной интерпретации статистической информации. Известные учащимся способы наглядного представления статистических данных с помощью столбчатых и круговых диаграмм расширяются за счет введения таких понятий, как полигон и гистограмма.

6. Повторение (7 ч)










Поурочное планирование

Геометрия, 8 класс

2011 / 2012 учебный год

Класс: 8 Г

Учитель: Чеботарева Фаина Мэлсовна

Количество часов:

  • на учебный год: 68

  • в неделю: 2

Плановых контрольных уроков:

I ч 1

II ч 1

III ч 2

IV ч 1

Итого: 5


Планирование составлено на основе:

  1. Г.М. Кузнецова, Н.Г. Миндюк. Программы для общеобразовательных школ, гимназий, лицеев. Математика, 5 – 11 кл. – 4-е изд., стереотип. М.: Дрофа, 2004. – 320с.

  2. Геометрия. 7 – 9 классы: учебник для общеобразовательных учреждений / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев, Э.Г. Позняк, И.И. Юдина. – М.: Прсвещение, 2010. – 384 с.

  3. Программы общеобразовательных учреждений. Геометрия. 7 – 9 классы. Сост. Т.А. Бурмистрова – М.: Просвещение, 2009 г.

Дополнительная литература:

1. Зив Б.Г. Геометрия. Дидактические материалы. 8 класс / Б.Г. Зив, В.М. Мейлер. – М.: Просвещение, 2010.

2. Мищенко Т.М. Геометрия. Тематические тесты. 8 класс / Т.М. Мищенко, А.Д. Блинков. – М.: Просвещение, 2010.

3. Атанасян Л.С. Геометрия. Рабочая тетрадь. 8 класс / Л.С. Атанасян, В.Ф. Бутузов, Ю.А. Глазков, И.И. Юдина. – М.: Просвещение, 2010.

4. Атанасян Л.С. Изучение геометрии в 7 – 9 классах: пособие для учителя – М.: Просвещение, 2010.



п/п

Раздел, название урока в

поурочном планировании

Дидактические единицы образовательного процесса

Контроль

знаний

учащихся

Коли-

чество

часов

Дата

Корректи

ровка


I четверть 18


ПОВТОРЕНИЕ

Цель: подготовить учащихся к изучению темы «Четырехугольники».

2



1

Повторение.

Уметь выполнять задачи из разделов курса VII класса: признаки равенства треугольников; соотношения между сторонами и углами треугольника; признаки и свойства параллельных прямых. Знать понятия: теорема, свойство, признак.

Практикум: решение наиболее типичных задач из курса геометрии VII класса. Решение задач по готовым чертежам. Групповой контроль.

1



2

Повторение.

1




ГЛАВА V ЧЕТЫРЕХУГОЛЬНИКИ

Цель: дать учащимся систематические сведения о четырехугольниках и их свойствах; сформировать представления о фигурах, симметричных относительно точки или прямой.

14




§1. МНОГОУГОЛЬНИКИ.



2



3

Многоугольник. Выпуклый многоугольник, п.39.

Уметь объяснить, какая фигура называется многоугольником, назвать его элементы; знать, что такое периметр многоугольника, какой многоугольник называется выпуклым; уметь вывести формулу суммы углов выпуклого многоугольника и решать задачи типа 364 – 370. Уметь находить углы многоугольников, их периметры.

Урок изучения и первичного закрепления новых знаний (лекция с элементами дискуссии). Тематический и групповой контроль.

1



4

Четырехугольник, п.п. 40,41.

Урок обобщения и систематизации знаний. С/Р обучающего характера. Индивидуальный письменный контроль.

1




§2. ПАРАЛЛЕЛОГРАММ И ТРАПЕЦИЯ.




6



5

Параллелограмм, п.42.



Знать определения параллелограмма и трапеции, виды трапеций, формулировки свойств и признаков параллелограмма и равнобедренной трапеции, уметь их

доказывать и применять при решении

задач типа 372 – 377, 379 – 383, 39О.




Комбинированный урок. М/Д. Взаимный контроль.

1



6

Свойства и признаки параллелограмма, п.43.

Урок теоретических С/Р. Самоконтроль и индивидуальный контроль.

1



7

Решение задач на свойства и признаки параллелограмма.

Практикум. С/Р Индивидуальный контроль.

1



п/п

Раздел, название урока в

поурочном планировании

Дидактические единицы образовательного процесса

Контроль

знаний

учащихся

Коли-

чество

часов

Дата

Корректи

ровка

8

Трапеция, п.44.

Уметь выполнять деление отрезка на n равных частей с помощью циркуля и линейки; используя свойства параллелограмма и равнобедренной трапеции уметь доказывать некоторые утверждения. Уметь выполнять задачи на построение четырехугольников.

Урок изучения и первичного закрепления новых знаний

1



9

Трапеция, п.44.

Урок закрепления знаний. Практикум. С/Р. Индивидуал. контроль.

1



10

Задачи на построение циркулем и линейкой.

Урок комплексного применения ЗУН учащихся. Практическая работа. Самоконтроль и взаимоконтроль.

1




§3. ПРЯМОУГОЛЬНИК. РОМБ. КВАДРАТ.




4



11

Прямоугольник, п.45.

Знать определения частных видов параллелограмма: прямоугольника, ромба и квадрата, формулировки их свойств и признаков.

Уметь доказывать изученные теоремы и применять их при решении задач типа 401 – 415.


Знать определения симметричных точек и фигур относительно прямой и точки.

Уметь строить симметричные точки и распознавать фигуры, обладающие осевой симметрией и центральной симметрией.

Урок практических самостоятельных работ (исследовательского типа). Тематический контроль.

1



12

Ромб и квадрат, п.46.

Самост. изучение теории. Самоконтроль и индивидуальный контр.

1



13

Решение задач.

Усвоение изученного материала в процессе решения задач. С/Р обучающего характера с проверкой на уроке. Самоконтроль.

1



14

Осевая и центральная симметрии, п. 47.

Практическая работа.

1



15

Решение задач.

Уметь применять все изученные формулы при решении задач, в устной форме доказывать теоремы и излагать необходимый теоретический материал.

Урок обобщения и систематизации знаний. Практикум по решению задач. Групповой, устный и письменный контроль. Урок зачет.

1



16

КОНТРОЛЬНАЯ РАБОТА №1 «Четырехугольники», п.п. 39-46.


Уметь применять все изученные формулы и теоремы при решении задач

Урок контроля, оценки и коррекции знаний учащихся. Фронтальный контроль.

1



п/п

Раздел, название урока в

поурочном планировании

Дидактические единицы образовательного процесса

Контроль

знаний

учащихся

Коли-

чество

часов

Дата

Корректи

ровка









ГЛАВА VI ПЛОЩАДЬ

Цель: сформировать понятие площади многоугольника, выработать у учащихся умение находить площадь треугольника, параллелограмма, трапеции, применять теорему Пифагора.

14




§1. ПЛОЩАДЬ МНОГОУГОЛЬНИКА.



2



17

Понятие площади многоугольника. Площадь квадрата, п.п. 48, 49.

Знать основные свойства площадей и формулу для вычисления площади прямоугольника. Уметь вывести формулу для вычисления площади прямоугольника и использовать ее при решении задач типа 447 – 454, 457.

Урок с частично- поисковой деятельностью.

ГК.

1



18

Площадь прямоугольника, п.50.

С/Р обучающего характера с проверкой на уроке. ИК.

1




II четверть 14


§2. ПЛОЩАДИ ПАРАЛЛЕЛОГ

РАММА, ТРЕУГОЛЬНИКА И ТРАПЕЦИИ.



6



19

Площадь параллелограмма, п.51.

Знать формулы для вычисления площадей параллелограмма, треугольника и трапеции; уметь их доказывать, а также знать теорему об отношении площадей треугольников, имеющих по равному углу, и уметь применять все изученные формулы при решении задач типа 459 – 464, 468 – 472, 474.

Изучение нового. материла. МД

1



20

21

Площадь треугольника, п.52.

Изучение нового материла. С/Р обучающего характера.

2



22

Площадь трапеции, п.53.

Изучение нового материла в процессе решения задач. С/Р.

1



23

24

Решение задач.

Закрепить в процессе решения задач, полученные ЗУН, подготовиться к КР.

Уроки обобщения и систематизации знаний. ИК. ВК.

2




§3. ТЕОРЕМА ПИФАГОРА.



3



25

Теорема Пифагора, п.54.

Знать теорему Пифагора и обратную ей теорему, область применения, пифагоровы тройки. Уметь доказывать теоремы и применять их при решении задач типа 483 – 499 (находить неизвестную величину в прямоугольном треугольнике).

Изучение нового материала.

Повторение (задачи по готовым чертежам). ГК.

1



26

Теорема, обратная теореме Пифагора, п.55.

Изучение нового материала. Тест. ИК.

1



27

Решение задач на применение теоремы Пифагора и обратной ей теоремы.

Уметь применять теоремы при решении задач типа 483 – 499 (находить неизвестную величину в прямоугольном треугольнике).


Урок закрепления знаний. Практикум. Проверочная С/Р. ИК.

1



п/п

Раздел, название урока в

поурочном планировании

Дидактические единицы образовательного процесса

Контроль

знаний

учащихся

Коли-

чество

часов

Дата

Корректи

ровка

28

29

Решение задач.

Уметь применять все изученные формулы и теоремы при решении задач; в устной форме доказывать теоремы и излагать необходимый теоретический материал.

Урок обобщения и систематизации знаний. Практикум по решению задач. Фронтальный опрос. ФК. Урок зачет.

2



30

КОНТРОЛЬНАЯ РАБОТА №2 «Площадь», п.п. 47-55.

Уметь применять все изученные формулы и теоремы при решении задач

Урок контроля, оценки и коррекции знаний учащихся. Фронтальный контроль.

1




ГЛАВА VII ПОДОБНЫЕ ТРЕУГОЛЬНИКИ

Цель: сформировать понятие подобных треугольников, выработать умение применять признаки подобия треугольников при решении простейших задач, использовать понятия синуса, косинуса, тангенса острого угла для решения прямоугольных треугольников.

19




§1. ОПРЕДЕЛЕНИЕ ПОДОБНЫХ ТРЕУГОЛЬНИКОВ.



2



31

Пропорциональные отрезки, п.56.

Знать определения пропорциональных отрезков и подобных треугольников, теорему об отношении подобных треугольников и свойство биссектрисы треугольника (задача 535).

Уметь определять подобные треугольники, находить неизвестные величины из пропорциональных отношений, применять теорию при решении задач типа 535 – 538, 541.

Урок изучения и первичного закрепления новых знаний. Беседа. ГК.

1



32

Определение подобных треугольников. Отношение площадей подобных треугольников, п.п. 57, 58.

Комбинированный урок. Изучение нового материла. С/Р обучающего характера. Взаимный контроль

1




III четверть 20


§2. ПРИЗНАКИ ПОДОБИЯ ТРЕУГОЛЬНИКОВ.



5



33

34

Первый признак подобия треугольников, п.59.

Знать признаки подобия треугольников, определение пропорциональных отрезков. Уметь доказывать признаки подобия и применять их при решении задач типа 550 – 555, 559 – 562.

Урок изучения и первичного закрепления новых знаний. Беседа. ГК.

2



35

36

Второй и третий признаки подобия треугольников, п.п. 60, 61.

Изучение нового материла. С/Р обучающего характера. Взаимный контроль.

2



37

Решение задач.

Урок обобщения и систематизации знаний. ИК.

1



п/п

Раздел, название урока в

поурочном планировании

Дидактические единицы образовательного процесса

Контроль

знаний

учащихся

Коли-

чество

часов

Дата

Корректи

ровка

38

КОНТРОЛЬНАЯ РАБОТА №3 «Признаки подобия треугольников», п.п. 56-61.

Уметь применять все изученные теоремы при решении задач, знать отношения периметров и площадей.

Урок контроля, оценки и коррекции знаний. ФК

1




§3. ПРИМЕНЕНИЕ ПОДОБИЯ К ДОКАЗАТЕЛЬСТВУ ТЕОРЕМ И РЕШЕНИЮ ЗАДАЧ.



7



39

40

Средняя линия треугольника, п.62. Решение задач.

Знать теоремы о средней линии треугольника, точке пересечения медиан треугольника и пропорциональных отрезках в прямоугольном треугольнике. Уметь доказывать эти теоремы и применять при решении задач типа 567, 568, 570, 572 – 577, а также уметь с помощью циркуля и линейки делить отрезок в данном отношении и решать задачи на построение типа 586 – 590.

Изучение нового материала. Тест. ИК. П/Р

2



41

42

Пропорциональные отрезки в прямоугольном треугольнике, п.63. Решение задач.

Изучение нового материла. Обучающая С/Р. ИК.

2



43

44

Решение задач на построение методом подобия.

Уроки практикумы по решению задач. С/Р.

2



45

Практические приложения подобия треугольников. О подобии произвольных фигур, п.п. 64, 65.

Практическая работа «Измерительные работы на местности». ГК.

1




§4. СООТНОШЕНИЯ МЕЖДУ СТОРОНАМИ И УГЛАМИ ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА.



3



46

Синус, косинус и тангенс острого угла прямоугольного треугольника, п.66.

Знать определения синуса, косинуса и тангенса острого угла прямоугольного треугольника, значения синуса, косинуса и тангенса для углов 30, 45 и 60, метрические соотношения. Уметь доказывать основное тригонометрическое тождество, решать задачи типа 591 – 602.

Изучение нового материала. Лекция. Самоконтроль.

1



47

Значения синуса, косинуса и тангенса для углов 30, 45 и 60, п.67.

Урок с частично- поисковой работой.

ВК. ИК.

1



48

Решение задач.

Урок закрепления знаний. С/Р. Зачет.

1



49

КОНТРОЛЬНАЯ РАБОТА №4 «Применение подобия к решению задач», п.п. 62-67.

Уметь применять все изученные формулы, значения синуса, косинуса, тангенса, метрические отношения при решении задач.


Урок контроля, оценки и коррекции знаний. ФК

1




ГЛАВА VIII ОКРУЖНОСТЬ

Цель: дать учащимся систематические сведения об окружности и ее свойствах, касательной к окружности, вписанных и описанных окружностях.

15




§1. КАСАТЕЛЬНАЯ К ОКРУЖНОСТИ.



3



п/п

Раздел, название урока в

поурочном планировании

Дидактические единицы образовательного процесса

Контроль

знаний

учащихся

Коли-

чество

часов

Дата

Корректи

ровка

50

Взаимное расположение прямой и окружности, п.68.

Знать возможные случаи взаимного расположения прямой и окружности, определение касательной, свойство и признак касательной. Уметь их доказывать и применять при решении задач типа 631, 633 – 636, 638 – 643, 648, выполнять задачи на построение

окружностей и касательных, определять отрезки хорд окружностей.

Урок – лаборатория. Исследование взаимного расположения прямой и окружности. С/Р практического характера. ГК.

1



51

52

Касательная к окружности, п.69.

Изучение нового матер. Комбинированный урок. Тест, обучающая С/Р.

2




VI четверть 16


§2. ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ.



3



53

Градусная мера дуги окружности, п.70.

Знать, какой угол называется центральным и какой вписанным, как определяется градусная мера дуги окружности, теорему о вписанном угле, следствия из нее и теорему о произведении отрезков пересекающихся хорд. Уметь доказывать эти теоремы и применять при решении задач типа 651 – 657, 659, 666 – 669.

Усвоение изученно

го материала в про цессе решения зад.

1



54

55

Теорема о вписанном угле, п.71.

Комбинированный урок: лекция, практикум, проверочная С/Р.

2




§3. ЧЕТЫРЕ ЗАМЕЧАТЕЛЬНЫЕ ТОЧКИ ТРЕУГОЛЬНИКА.



3



56

57

Свойства биссектрисы угла и серединного перпендикуляра к отрезку, п.72.

Знать теоремы о биссектрисе угла и о серединном перпендикуляре к отрезку, их следствия, а также теорему о пересечении высот треугольника. Уметь доказывать эти теоремы и применять их при решении задач типа 674 – 679, 682 – 686. Уметь выполнять построение замечательных точек треугольника.

Изучение нового матер. Подготовительная работа по готовым чертежам. ИК.

2



58

Теорема о пересечении высот треугольника, п.73.

Усвоение материала в процессе выполнения практической работы и решения задач. ГК, ИК.

1




§4. ВПИСАННАЯ И ОПИСАННАЯ ОКРУЖНОСТИ.



4



59

60

Вписанная окружность, п.74.

Знать, какая окружность называется вписанной в многоугольник и какая описанной около многоугольника, теоремы об окружности, вписанной в треугольник, и об окружности, описанной около треугольника, свойства вписанного и описанного четырехугольников. Уметь доказывать эти теоремы и применять при решении задач типа 689 – 696, 701 – 711.

Усвоение материала в процессе решения задач. С/Р обуч. характера.

2



61

62

Описанная окружность, п.75.

Усвоение изученного материала в процессе решения задач. С/Р обучающего характера.

2



п/п

Раздел, название урока в

поурочном планировании

Дидактические единицы образовательного процесса

Контроль

знаний

учащихся

Коли-

чество

часов

Дата

Корректи

ровка

63

Решение задач.

Знать утверждения задач 724, 729 и уметь их применять при решении задач типа 698 – 700, 708.

Комбинированный урок: практикум, зачет. Фронтальный устный опрос. Урок зачет.

1



64

КОНТРОЛЬНАЯ РАБОТА №5 «Окружность», п.п. 68-75.

Уметь применять все изученные теоремы при решении задач.

Урок контроля, оценки и коррекции знаний. Фронтальный письменный контроль.

1




ИТОГОВОЕ ПОВТОРЕНИЕ



4



65

Четырехугольники.

Закрепление знаний, умений и навыков, полученных на уроках по данным темам (курс геометрии 8 класса).

Уроки обобщения и систематизации знаний. Решение задач повышенной трудности.

1



66

Площадь.

1



67

Подобные треугольники.

1



68

Окружность. Итоговое занятие.

1






УЧЕБНО-МЕТОДИЧЕСКИЕ СРЕДСТВА ОБУЧЕНИЯ

1. Геометрия. 7 – 9 классы: учебник для общеобразовательных учреждений / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев, Э.Г. Позняк, И.И. Юдина. – М.: Прсвещение, 2010. – 384 с.

2. Зив Б.Г. Геометрия. Дидактические материалы. 8 класс / Б.Г. Зив, В.М. Мейлер. – М.: Просвещение, 2010. – 159 с.

3. Фарков А.В. Тесты по геометрии. 8 класс. – М.: Экзамен, 2009. – 110 с.

4. Мищенко Т.М. Геометрия. Тематические тесты. 8 класс / Т.М. Мищенко, А.Д. Блинков. – М.: Просвещение, 2010. – 129 с.

5. Атанасян Л.С. Геометрия. Рабочая тетрадь. 8 класс / Л.С. Атанасян, В.Ф. Бутузов, Ю.А. Глазков, И.И. Юдина. – М.: Просвещение, 2010. – 65 с.

6. Гаврилова Н.Ф. Поурочные разработки по геометрии. – М.: ВАКО, 2010. – 367 с.

7. Атанасян Л.С. Изучение геометрии в 7 – 9 классах: пособие для учителя – М.: Просвещение, 2010. – 255 с.


8. Живая математика. Учебно-методический комплект. Версия 4.3. Программа. Компьютерные альбомы. М: ИНТ.

9. Живая математика: Сборник методических материалов. М: ИНТ. – 168 с.

10. Макарычев Ю.Н. Изучение алгебры. 7-9 классы: книга для учителя / Ю. Н. Макарычев, Н. Г. Миндюк, С. Б. Суворова, И. С. Шлыкова. – М.: Просвещение, 2009. – 304 с.

11. Элементы статистики и теории вероятностей: Учеб пособие для обучающихся 7-9 кл. общеобразоват. учреждений / Ю.Н. Макарычев, Н.Г. Миндюк; под ред. С.А. Теляковского. – М.: Просвещение, 2007.

12. [link]