Рабочая программа по геометрии 9 класс

Автор публикации:

Дата публикации:

Краткое описание: ...



Ф [pic] ЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ СПЕЦИАЛЬНОЕ УЧЕБНО-ВОСПИТАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ДЛЯ ДЕТЕЙ И ПОДРОСТКОВ С ДЕВИАНТНЫМ ПОВЕДЕНИЕМ

«Специальное профессиональное училище закрытого типа г. Астрахани»


«Рассмотрено»

Руководитель МО

_________/Некозырева Е.В../

Протокол № ___

от «__»____________20___г.


«Согласовано»

Зам.директора по УПР

_____________/Блинкова И.В../

«__»____________20___г.


«Утверждаю»

И.о.директора Астраханского спец. ПУ

_____________/Митячкин В.Ю./

Приказ № ___ от «__»____20___г.


Рабочая программа

Предмет: геометрия

Класс 9

Профиль: базовый

Всего часов на изучение программы 68

Количество часов в неделю 2





Артемова В.Б.

преподаватель математики

первая квалификационная категория







2014-2015 уч. год


Пояснительная записка


Данная рабочая программа составлена в соответствии с требованиями федерального компонента Государственного образовательного стандарта основного общего образования по математике, Программы общеобразовательных учреждений по геометрии для 7-9 классов, составитель: Т.А.Бурмистрова. - М.: Просвещение , 2009год. Программа соответствует учебнику « Геометрия. 7-9 классы » / Л. С.Атанасян, В. Ф. Бутузов и др.М. : Просвещение, 2011 г.

На преподавание геометрии в 9 классе отведено 2 часа в неделю, всего 68 часов в год.     

Цели обучения математики в общеобразовательной школе определяются ее ролью в развитии общества в целом и формировании личности каждого отдельного человека. Геометрия – один из важнейших компонентов математического образования. Она необходима для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, развития пространственного воображения и интуиции, математической культуры, эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

Программа направлена на достижение следующих

целей:

  • овладение системой математических знаний и умений, необходимых для применения практической деятельности изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как части общечеловеческой культуры, понимание значимости математики для научно технического прогресса;

  • развитие представлений о полной картине мира, о взаимосвязи математики с другими предметами.

В курсе геометрии 9-го класса формируется понятие вектора. Особое внимание уделяется выполнению операций над векторами в геометрической форме. Учащиеся дополняют знания о треугольниках сведениями о методах вычисления элементов произвольных треугольниках, основанных на теоремах синусов и косинусов. Даются систематизированные сведения о правильных многоугольниках, об окружности, вписанной в правильный многоугольник и описанной. Особое место занимает решение задач на применение формул. Даются первые знания о движении, повороте и параллельном переносе. Серьезное внимание уделяется формированию умений рассуждать, делать простые доказательства, давать обоснования выполняемых действий. Параллельно закладываются основы для изучения систематических курсов стереометрии, физики, химии и других смежных предметов.


Учебно-тематический план.


главы

Название главы

Количество

часов

Контрольные

работы

9

Векторы

8



1

10

Метод координат

10

11

Соотношения между сторонами и углами треугольника. Скалярное произведение векторов

11

1


12

Длина окружности и площадь круга

12

1


13

Движения

8

1

14

Начальные сведения из стереометрии

8

-

Об аксиомах планиметрии

2

-

Повторение. Решение задач

9

-

Всего

68

4


Содержание обучения


Векторы.

Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число. Основное внимание должно быть уделено выработке умений выполнять операции над векторами (складывать векторы по правилам треугольника и па­раллелограмма, строить вектор, равный разности двух данных векторов, а также вектор, равный произведению данного вектора на данное число). На примерах показывается, как векторы могут применяться к решению геометрических задач. Основная цель - научить учащихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике. Вектор определяется как направленный отрезок и действия над векторами вводятся так, как это принято в физике, т. е. как действия с направленными отрезками

Метод координат

Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Простей­шие задачи в координатах. Уравнения окружности и прямой. Применение векторов и координат при решении задач. Основная цель - познакомить с использованием метода координат при решении геометрических задач.Демонстрируется эффективность применения формул для координат середины отрезка, расстояния между двумя точками, уравнений окружности и прямой в конк­ретных геометрических задачах, тем самым дается представление об изучении геометрических фигур с помощью методов алгебры.

Соотношения между сторонами и углами треугольника

Скалярное произведение векторов. Синус, косинус и тангенс угла. Теоремы синусов и косину­сов. Решение треугольников. Скалярное произведение векторов и его применение в геометрических задачах. Основная Цель - развить умение учащихся применять тригонометрический аппарат при решении геометрических задач. Синус и косинус любого угла от 00 до 1800 вводятся с помо­щью единичной полуокружности, доказываются теоремы синусов и косинусов и выводится еще одна формула площади треугольни­ка (половина произведения двух сторон на синус угла между ними). Этот аппарат применяется к решению треугольников. Скалярное произведение векторов вводится как в физике (произведение длин векторов на косинус угла между ними). Рас­сматриваются свойства скалярного произведения и его примене­ние при решении геометрических задач. Основное внимание следует уделить выработке прочных на­выков в применении тригонометрического аппарата при реше­нии геометрических задач.

Длина окружности и площадь круга

Правильные многоугольники. Окружности, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности. Площадь круга. Основная Цель - расширить знание учащихся о много­угольниках; рассмотреть понятия длины окружности и площади круга и формулы для их вычисления. В начале темы дается определение правильного многоуголь­ника и рассматриваются теоремы об окружностях, описанной около правильного многоугольника и вписанной в него. С помо­щью описанной окружности решаются задачи о построении пра­вильного шестиугольника и правильного 2 n -угольника, если дан правильный n-угольник. Формулы, выражающие сторону правильного многоугольника и радиус вписанной в него окружности через радиус описанной окружности, используются при выводе формул длины окружно­сти и площади круга. Вывод опирается на интуитивное представ­ление о пределе: при неограниченном увеличении числа сторон правильного многоугольника, вписанного в окружность, его пери­метр стремится к длине этой окружности, а площадь - к площа­ди круга, ограниченного окружностью.

Движения

Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрии. Параллельный перенос. Поворот. На­ложения и движения. Основная Цель - познакомить учащихся с понятием движения и его свойствами, с основными видами движений, со взаимоотношениями наложений и движений. Движение плоскости вводится как отображение плоскости на себя, сохраняющее расстояние между точками. При рассмотре­нии видов движений основное внимание уделяется построению образов точек, прямых, отрезков, треугольников при осевой и центральной симметриях, параллельном переносе, повороте. На эффектных примерах показывается применение движений при решении геометрических задач. Понятие наложения относится в данном курсе к числу основ­ных понятий. Доказывается, что понятия наложения и движения являются эквивалентными: любое наложение является движени­ем плоскости и обратно. Изучение доказательства не является обязательным, однако следует рассмотреть связь понятий нало­жения и движения.

Об аксиомах геометрии

Беседа об аксиомах по геометрии. Основная Цель - дать более глубокое представление о си­стеме аксиом планиметрии и аксиоматическом методе. В данной теме рассказывается о различных системах аксиом геометрии, в частности о различных способах введения понятия равенства фигур.

Начальные сведения из стереометрии

Предмет стереометрии. Геометрические тела и поверхности. Многогранники: призма, параллелепипед, пирамида, формулы для вычисления их объемов. Тела и поверхности вращения: ци­линдр, конус, сфера, шар, формулы для вычисления их площа­дей поверхностей и объемов. Основная Цель - дать начальное представление о телах и поверхностях в пространстве; познакомить учащихся с основ­ными формулами для вычисления площадей поверхностей и объ­емов тел. Рассмотрение простейших многогранников (призмы, парал­лелепипеда, пирамиды), а также тел и поверхностей вращения (цилиндра, конуса, сферы, шара) проводится на основе нагляд­ных представлений, без привлечения аксиом стереометрии. Формулы для вычисления объемов указанных тел выводятся на основе принципа Кавальери, формулы для вычисления площа­дей боковых поверхностей цилиндра и конуса получаются с по­мощью разверток этих поверхностей, формула площади сферы приводится без обоснования.

Повторение. Решение задач


Требования к уровню подготовки учащихся


В результате изучения курса геометрии 9-го класса учащиеся должны уметь:

  • пользоваться геометрическим языком для описания предметов окружающего мира;

  • распознавать геометрические фигуры, различать их взаимное расположение;

  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразование фигур;

  • вычислять значения геометрических величин (длин, углов, площадей), в том числе: определять значение тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них; находить стороны, углы и площади треугольников, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;

  • решать геометрические задания, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, соображения симметрии;

  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

  • решать простейшие планиметрические задачи в пространстве.

Учебно-методическое обеспечение


1. Примерные программы для общеобразовательных учреждений по геометрии для 7 -9 классов, составитель Бурмистрова Т.А. –М.: Просвещение, 2009 г.

2. Геометрия 7-9, Л.С. Атанасян, В.Ф. Бутузов, С.Б.Кадомцев и др. / учебник для общеобразовательных учреждений/ . –М. : Просвещение, 2011 г.

3.Федеральный компонент государственного образовательного стандарта общего образования по математике.

4.Зив Б.Г. Дидактические материалы по геометрии для 9 класса – М.: Просвещение, 2008 г.

5.Самостоятельные и контрольные работы по геометрии для 9 класса– М.: Илекса, 2008 г.

























Сокращения, используемые в рабочей программе:

Типы уроков:

УОНМ — урок ознакомления с новым материалом.

УЗИМ — урок закрепления изученного материала.

УПЗУ — урок применения знаний и умений.

УОСЗ урок обобщения и систематизации знаний.

УПКЗУ — урок проверки и коррекции знаний и умений.

КУ — комбинированный урок.


Виды контроля:

ФО — фронтальный опрос.

ИРД — индивидуальная работа у доски.

ИРК — индивидуальная работа по карточкам.

СР самостоятельная работа.

ПР — проверочная работа.

МД математический диктант.

Т – тестовая работа.



Календарно-тематическое планирование

Наименование раздела программы

Тема урока

Кол-во часов

Тип урока

Элементы содержания образования

Требования к уровню подготовки обучающихся

Вид кон-троля

Элементы доп-ного содержания

Дом.за-дание

Дата проведения урока

план

факт


Вводное повторение


2









1

Многоугольники (определение, свойства, формулы площадей).

1

КУ


многоугольник, элементы многоугольника, свойства, площадь многоугольника

-знать свойства основных четырехугольников;

-знать формулы площадей;

-уметь строить многоугольники и по чертежу определять их свойства

ФО [1],

ИРД



формулы, задания в тетради



2

Окружность, элементы окружности. Вписанная и описанная окружность. Виды углов.

1

КУ


окружность, радиус и диаметр окружности, центр вписанной и описанной окружности, градусная мера центральных и вписанных углов

-уметь строить вписанные и описанные окружности;

-знать элементы окружности;

-различать центральные и вписанные углы

ФО [1],


ИРД


начертить вписанную и описанную окружность вокруг треугольника



I

Векторы


9









3-4

Понятие вектора.

2

КУ УЗИМ

определение вектора, виды векторов, длина вектора

-уметь изображать, обозначать вектор, нулевой вектор;

-знать виды векторов

ФО [1], стр.213?1-6

ИРД


п.76-78, №742, 743, 746, 749, 751



5-7

Сложение и вычитание векторов.

3

КУ УОНМ УПЗУ

вектор, операции сложения и вычитания векторов

-уметь практически складывать и вычитать два вектора, складывать несколько векторов

ФО [1], стр.213?7-13

ИРД


УМК Живая математика

п.79-82, №754, 757, 761, 763, 765



8

Умножение вектора на число.

1

УОНМ

вектор, правило умножения векторов, средняя линия трапеции

-уметь строить произведение вектора на число;

-уметь строить среднюю линию трапеции

ФО [1], стр.213?14-20

ИРД



п.83, 85, №777, 780



9-11

Решение задач.

3

КУ УПЗУ

УЗИМ

правило сложения и вычитания векторов, правило умножения векторов

-уметь на чертеже показывать сумму, разность, произведение векторов;

-уметь применять эти правила при решении задач

ФО [1],

ИРД



п.84, №781, 783, 785



II

Метод координат


11









12-13

Координаты вектора.

2

КУ

УОНМ

координаты вектора, координаты результатов операций над векторами, коллинеарные вектора

-уметь находить координаты вектора по его разложению и наоборот;

-уметь определять координаты результатов сложения, вычитания, умножения на число

ФО [1], стр.249 ?1-8

ИРД

СР[2], С-1

УМК Живая математика

п.86,87, №912, 914, 919, 921



14

Решение задач.

1

КУ


координаты вектора, координаты результатов операций над векторами

-уметь применять знания при решении задач в комплексе

ФО [1],

ИРД


УМК Живая математика

п.86,87, №923, 925, 926



Наименование раздела программы

Тема урока

Кол-во часов

Тип урока

Элементы содержания образования

Требования к уровню подготовки обучающихся

Вид кон-троля

Элементы доп-ного содержания

Дом.за-дание

Дата проведения урока

план

факт

15


Контрольная работа №1.

1



-уметь применять полученные знания в комплексе при решении задач на определение координат вектора, на определение вектора суммы, разности, произведения

[3], КР-1





16-17

Простейшие задачи в координатах.

2

КУ УПЗУ


радиус-вектор, координата вектора, метод координат, координата середины отрезка, длина вектора, расстояние между двумя точками

-уметь определять координаты радиус-вектора;

-уметь находить координаты вектора через координаты его начала и конца;

- уметь вычислять длину вектора по его координатам, координаты середины отрезка и расстояние между двумя точками

ФО [1], стр.249 ? 9-13

ИРД

ИРК

СР[2], С-2


п.88,89, №930, 932, 935, 939, 938, 941, 948, 951



18

Уравнение окружности.

1

УЗИМ


уравнение окружности

-знать уравнение окружности;

-уметь решать задачи на применение формулы

ФО [1], стр.249 ? 16,17

ИРД

УМК Живая математика

п.91, №961, 963, 966



19

Уравнение прямой.

1

УОНМ


уравнение прямой

-знать уравнение прямой;

-уметь решать задачи на применение формулы

ФО [1], стр.249 ? 18-21

ИРД

СР[2], С-3

УМК Живая математика

п.92, №973, 975, 976



20-21

Решение задач.

2

КУ УПЗУ

уравнение окружности и прямой

-знать уравнения окружности и прямой;

-уметь решать задачи

ФО

ИРД

ИРК



967, 970, 978, 979



22

Контрольная работа №2.

1



-уметь решать простейшие задачи в координатах;

-уметь решать задачи на составлении уравнений окружности и прямой

[3], КР-2





III

Соотношение между сторонами и углами треугольника


12









23-25

Синус, косинус, тангенс угла.

3

КУ

УОНМ УЗИМ

единичная полуокружность, основное тригонометрическое тождество, формулы приведения

-знать определение основных тригонометрических функций и их свойства;

-уметь решать задачи на применение формулы для вычисления координат точки

ФО [1], стр.271 ? 1-6

ИРД

СР[2], С-4


п.93-95, №1013, 1015, 1018, 1019



26

Площадь треугольника.

1

УОНМ

теорема о площади треугольника, формула площади

-уметь выводить формулу площади треугольника;

-уметь применять формулу при решении задач

ФО [1], стр.271 ? 7

ИРД



п.96, №1021, 1024



27

Теорема синусов.

1

УОСЗ

теорема синусов

-знать теорему синусов и уметь решать задачи на её применение

ФО [1], стр.271 ? 8

ИРД


п.97, №1027



Наименование раздела программы

Тема урока

Кол-во часов

Тип урока

Элементы содержания образования

Требования к уровню подготовки обучающихся

Вид кон-троля

Элементы доп-ного содержания

Дом.за-дание

Дата проведения урока

план

факт

28


Теорема косинусов.

1

КУ

теорема косинусов

-знать вывод формулы;

-уметь применять формулу при решении задач

ФО [1], стр.271 ? 9

ИРД

СР[2], С-5

обобщенная теорема Пифагора

п.98, №1025(а,б)



29-33

Решение треугольников.

5

КУ УЗИМ

УОНМ УПЗУ

теорема синусов, теорема косинусов

-уметь находить все шесть элементов треугольника по каким-нибудь трем данным элементам, определяющим треугольник


ФО [1], стр.217 ? 10

ИРД

ИРК

СР[2], С-6

УМК Живая математика, задачи на решение треугольника

п.99, 100, №1025, 1030, 1028



34

Контрольная работа №3.

1



-уметь применять теорему синусов и теорему косинусов в комплексе при решении задач

[3], КР-3





IV

Длина окружности и площадь круга


12









35-36

Правильные многоугольники.

2

КУ

УОСЗ

правильный многоугольник, вписанная и описанная окружность

-уметь вычислять угол правильного многоугольника по формуле;

-уметь вписывать окружность в правильный многоугольник и описывать

ФО [1], стр.290? 1-4

ИРД

ИРК


п.105-107, №1081, 1084, 1085



37-42

Нахождение сторон правильного многоугольника через радиусы описанной и вписанной окружностей.

6

КУ УПЗУ УОНМ

УЗИМ УПКЗУ


площадь правильного многоугольника, его сторона, периметр, радиусы вписанной и описанной окружностей

-уметь решать задачи на применение формул зависимости между R, r, an;

-уметь строить правильные многоугольники

ФО [1], стр.290?5-7

ИРД

СР[2], С-7

УМК Живая математика, задачи на построение

п.108, 109, №1087, 1088, 1091, 1094, 1096



43-45

Длина окружности и площадь круга.

3

КУ УПЗУ УОСЗ


длина окружности, площадь круга, площадь кругового сектора

-знать формулы для вычисления длины окружности и площади круга;

-уметь выводить формулы и решать задачи на их применение

ФО [1], стр.290? 8-12

ИРД

СР[2], С-8

УМК Живая математика

п.110-112, №1102, 1105, 1110, 1114, 1120



46

Контрольная работа №4.

1



-уметь решать задачи на зависимости между R, r, an;

-уметь решать задачи, используя формулы длины окружность, площади круга и кругового сектора

[3], КР-4





V

Движения


12









47

Понятие движения.

1

УОНМ

отображение плоскости на себя

-знать , что является движением плоскости

ФО [1],

стр.303?1

ИРД

УМК Живая математика

п.113, 114,



48-49

Симметрия.

2

КУ УПЗУ

осевая и центральная симметрия

-знать какое отображение на плоскости является осевой симметрией, а какое центральной

ФО [1], стр.303 ?2-13

СР[2], С-9

УМК Живая математика

п.114,115, №1149, 1151, 1153



50-53

Параллельный перенос.

4

КУ УПЗУ УОНМ

УОСЗ

параллельный перенос

-знать свойства параллельного переноса;

-уметь строить фигуры при параллельном переносе на вектор [pic] .

ФО [1], стр.303 ?14,15

ИРД


УМК Живая математика

п.116, №1163, 1165



Наименование раздела программы

Тема урока

Кол-во часов

Тип урока

Элементы содержания образования

Требования к уровню подготовки обучающихся

Вид кон-троля

Элементы доп-ного содержания

Дом.за-дание

Дата проведения урока

план

факт

54-57


Поворот.

4

КУ УОСЗ

УПКЗУ

УЗИМ

поворот

-уметь строить фигуры при повороте на угол [pic]

ФО [1], стр.303?16,17

ИРД

СР[2], С-10

УМК Живая математика

п.117, №1167, 1169, 1170



58

Контрольная работа №5.

1



-уметь строить фигуры при параллельном переносе и повороте

[3], КР-5

УМК Живая математика





Итоговое повторение курса геометрии 8 класса


10









59-60

Об аксиомах планиметрии.


КУ

УПКЗУ


аксиомы планиметрии

-знать все об аксиомах планиметрии

ФО [1],

ИРД


конспект



61-63

Решение задач в координатах.

3

КУ УОСЗ


координаты вектора, метод координат

-уметь находить координаты вектора через координаты его начала и конца;

- уметь вычислять длину вектора по его координатам, координаты середины отрезка и расстояние между двумя точками

ФО [1],

ИРД

ИРК

УМК Живая математика

п.88,89



64-67

Теоремы синусов и косинусов.

4

КУ УПЗУ

теорема синусов, теорема косинусов

- уметь находить все элементы треугольника по каким-нибудь трем данным элементам, определяющим треугольник

ФО [1],

ИРД



п.99,100



68

Итоговая административная контрольная работа.

1



-уметь применять все полученные знания за курс геометрии 9 класса







Уроки №69, 70 резервные


Литература:

  1. Артюнян Е. Б., Волович М. Б., Глазков Ю. А., Левитас Г. Г. Математические диктанты для 5-9 классов. – М.: Просвещение, 1991.

  2. Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б., Позняк Э. Г., Юдина И. И. Геометрия 7-9. – М.: Просвещение, 2006.

  3. Буланова Л. М., Дудницын Ю. П. Проверочные задания по математике для учащихся 5-8 и 10 классов. – М.: Просвещение, 1998.

  4. Зив Б. Г., Мейлер В. М. Дидактические материалы по геометрии за 9 класс. – М.: Просвещение, 2005.

  5. Иченская М. А. Самостоятельные и контрольные работы к учебнику Л. С. Атанасяна 7-9 классы. – Волгоград: Учитель, 2006.


8