2
ООО Учебный центр «ПРОФЕССИОНАЛ»
План-конспект урока
по алгебре
в 9 классе МКОУ СОШ Чехов-7 Московской обл. Чеховского р-на
на тему «Арифметическая прогрессия»
Разработал: Хабибуллина Ирина Аркадьевна
слушатель курсов профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Проверил:
г. Чехов, 2016
Урок по теме «Арифметическая прогрессия»
1. Тема: Арифметическая прогрессия. Основные понятия. п 16;
2. Обобщенная цель урока: сформировать понятие арифметической прогрессии и ее компонентов; научить применять полученные знания при решении основных типов задач на арифметическую прогрессию.
3. Задачи:
предметные: создать условия для формирования первоначальных представлений об арифметической прогрессии; поиска и выделения необходимой информации; подведения под понятия; выведения следствий; умения строить логическое рассуждение и делать выводы; формирования образовательной компетентности
метапредметные: развивать умения определять понятия, создавать обобщени, анализировать.
личностные: формировать умения слушать и вступать в диалог, участвовать в коллективном обсуждении проблемы, доказывать свою точку зрения; формировать целостное мировоззрение.
4. Тип урока: урок «открытия» нового знания
5. Формы работы учащихся: фронтальная работа, парная и индивидуальная работа, групповая, технология ИКТ
6. Необходимое техническое оборудование: персональный компьютер, проектор, экран.
7.Характеристика этапов урока представлены в таблице 3. На каждом этапе урока учитель и учащиеся выполняют конкретные действия (табл.3), связанные с задачами этапов и познавательными УУД.
8. Перечень используемых ЦОР и ЭОР на данном уроке (таблица 4)
Характеристика этапов урока
Таблица 1
Этап урока Время, мин
Содержание учебного материала
Методы
и приемы работы
ФОУД*
Деятельность учителя
Деятельность
учеников
Планируемые результаты
познавательная
коммуникативная
регулятивная
Этап актуализации
5 мин
Теоретически-практический тест
(2 варианта) с последующей взаимопроверкой.
Репродуктивный
И
Организует воспроизведение знаний и умений, необходимых для решения проблемных ситуаций
Поиск и выделение необходимой информации о последовательностях, структурирование знания по теме «Последовательности»
Управление поведением партнёра (контроль, оценка действий партнёра)
Контроль в форме сличения результата с заданным эталоном.
Актуализация опорных знаний обучающихся по теме «Числовые последовательности».
Этап проблематизации
7 мин
Работа с числовыми последовательностями (разделить последовательности две группы и обосновать свой выбор). (П) и кроссвордом (Г).
Историческая справка о происхождении понятия «прогрессия» (И)
Проблемный
наглядный
П, Г, И
Создаёт условия для осознания обучающимися существа проблемы и формулирования темы урока.
Осуществляет обратную связь.
Анализ числовых последовательностей с выделением существенных и несущественных признаков, выбор оснований и критериев для сравнения, классификации последовательностей, подведение под понятие.
Умение достаточно полно и точно излагать свои мысли, планирование учебного сотрудничества.
Контроль в форме сличения результата с заданным эталоном, коррекция, построение речевых высказываний.
Включение обучающихся в активную учебно-познавательную деятельность на основе опорных знаний. Осознание проблемной ситуации, формулирование темы урока «Арифметическая прогрессия»
Этап целеполагания
3 мин
Формулировка цели и задач урока для обучающихся и учителя.
Словесный
Ф
Организует принятие цели и постановку задач урока обучающимися.
Самостоятельное выделение и формулировка учебной цели.
Умение достаточно полно и точно излагать свои мысли
Целеполагание, построение речевых высказываний
Постановка учебной задачи и цели предстоящей деятельности.
Этап концептуализации и моделирова-ния
16 мин
Формулировка определения арифметической прогрессии (П), обозначение арифметической прогрессии (Ф), решение задач(Г).
Формула n-го члена арифметической прогрессии.
Частично-поисковый,
нагдядный
Ф, Г, П
Организует работу по формулированию определения арифметической прогрессии, выводу формулы n-го члена, вводит необходимую информацию, обеспечивает фиксацию необходимого материала в знаково-символическоцй форме:
аn=а1+(n-1)d.
Осуществляет обратную связь.
Выдвижение гипотез, подведение под понятия, выведение следствий, рефлексия способов и условий действия, их контроль и оценка.
Умение достаточно полно и точно излагать свои мысли, планирование учебного сотрудничества.
Контроль, коррекция, волевая саморегуляция.
Усвоение сущности усваиваемых знаний и способов действий на репродуктивном уровне. Вывод формулы n-го члена арифметической прогрессии
Этап конструирования
12 мин
Преобразование формулы n-го члена арифметической прогрессии для нахождения а1, d, n, выявление характеристического свойства. (Г). Решение задач на применение полученных формул и заполнение таблицы. (Г) Самостоятельное выполнение заданий за компьютером.(И)
Исследо-вательский
наглядный,
репродук-тивный
Г, И
Определяет границы применимости формулы n-го члена арифметической прогрессии.
Организует работу по выявлению характеристического свойства.
Показывает образец записи решения задачи.
Осуществляет обратную связь.
Поиск и выделение необходимой информации, рефлексия способов и условий действия, их контроль и оценка, выбор наиболее эффективных способов решения задач в зависимости от условий.
Умение достаточно полно и точно излагать свои мысли, построение речевых высказываний, лидерство и согласование действий с членами группы.
Контроль, коррекция. волевая саморегуляция
Получение формул для нахождения а1, d, n, характеристического свойства арифметической прогрессии.
Выполнение заданий, требующих применения знаний в знакомой и измененной ситуации.
Этап рефлексии
2 мин
Словесный
наглядный
Ф, И
Организует процесс контроля и оценки, создаёт атмосферу взаимного доверия. Осуществляет обратную связь.
Рефлексия способов и условий действия, их контроль и оценка; критичность
Умение достаточно полно и точно излагать свои мысли,
Оценка
Осознание обучающимися результата своей деятельности на уроке, уровня личностного продвижения в данной области знаний.
Получение
информации о результатах учения.
* ФОУД – форма организации учебной деятельности обучающихся (Ф – фронтальная, И – индивидуальная, П – парная, Г – групповая).
Ход урока
1. Этап актуализации.
- Наше познание курса алгебры можно сравнить с походом в горы и сегодня мы с вами преодолеем ещё одну математическую вершину, а какую вы узнаете позже. А теперь давайте проверим ваш багаж и выясним готовы ли вы к восхождению.
Теоретически – практический тест
Вариант 1
1. Последовательности бывают:
а) конечные б) постоянные в) бесконечные
2. Числа, образующие последовательность, называются:
а) членами б) номерами в) числами
3. Найдите первые 3 члена последовательности, заданной формулой n – го члена хn = 2n – 1
а) 2; 7; 8;… б) 1; 3; 5; … в) -1; 2; 6; …
4. Найдите седьмой член последовательности ( аn), заданной формулой: аn = n( n + 1 )
а) 5 б) 12 в) 56
5. Найдите второй член последовательности ( сn ), если с1 = 8; сn+1 = cn – 1
а) 6 б) 7 в) 8
Вариант 2
1. Последовательность обозначается
а) хn б) аn в) ( xn )
2. Способы задания последовательностей:
а) формулой n – го члена б) рекуррентный способ в) словесно
3. Члены последовательности обозначаются:
а) а1, а2, а3,… б) 1а, 2а, 3а,… в) а1, а2,а3,….
4. Найдите второй член последовательности ( сn ), если с1 = 8; сn+1 = cn + 1
а) 9 б) 7 в) 3
5. Найдите шестой член последовательности ( аn), заданной формулой: аn = n( n + 1 )
а) 67 б) 42 в) 56
(учащиеся выполняют тест по вариантам, при проверке обмениваются тестами и выполняют взаимопроверку по предложенным ответам, выставляют оценки согласно критериям. За каждое верно выполненное задание 1 балл) (Слайд 2)
Вариант 1
2
3
4
5
1
а, б, в
а
б
в
б
2
в
а, б, в
в
а
б
- Поставьте оценки в трансфертные листы, которые вы сдадите в конце урока. (Приложение 1)
- Кто всё правильно выполнил? У кого 1 ошибка? 2 ошибки?
- Молодцы! Теперь можно смело отправляться в путь. Путь к вершине всегда труден. и чтобы её достичь. нужно преодолеть немало испытаний. Перед вами первое испытание.
2. Этап проблематизации.
(Работа в парах + группа из 4 человек разгадывает кроссворд)
(Слайд 3)
Предложенные числовые последовательности распределите на две группы, назовите их общий признак.
(an): 1; 3; 5; 7; 5; 9; 11…
(кn): 14; 11; 8; 5; 2; - 1; -4; …
(хn): 1, 2, 4, 8, 16; …
(cn): 2; 6; 18; 54…
(dn): 16; 13; 10; 7…
(en): 32; 16; 8; 4…
(an): 1; 3; 5; 7; 5; 9; 11… (кn): 14; 11; 8; 5; 2; - 1; -4; …
(dn): 16; 13; 10; 7…
(хn): 1, 2, 4, 8, 16; …
(cn): 2; 6; 18; 54…
(en): 32; 16; 8; 4…
- В первой группе следующий член последовательности получается при прибавлении к предыдущему некоторого числа или два соседних члена отличаются на одно и то же число.
- Во второй группе следующий член последовательности получается при умножении предыдущего на число.
- Кто готов ответить? Какие ещё варианты?
- Теперь сравните полученные результаты с образцом и поставьте оценки. (Слайд 4)
(Правильно сгруппированы последовательности и верно определён признак – «5», верно сгруппированы последовательности, но признак определён неверно – «4», допущены 1 - 2 ошибки при группировке последовательностей, признак определён неверно – «3», допущено больше 2 ошибок, признак не определён или определён неверно – «2»)
Поднимите руки у кого «5», «4».
- Как называется каждая из этих последовательностей нам скажут ребята, работавшие в группе.
1 П
е
р
в
ы
й
2
п
Р
е
д
ы
д
у
щ
и
й
3
к
О
н
е
ч
н
а
я
Г
4
р
е
к
у
Р
р
е
н
т
н
ы
й
5
ч
л
Е
н
ы
6
в
о
з
р
а
С
т
а
ю
щ
а
я
7
С
л
о
в
е
с
н
ы
й
8
И
н
д
е
к
с
9
у
б
ы
в
а
ю
щ
а
Я
Вопросы:
Номер члена последовательности, стоящего в самом начале. (Первый)
Член последовательности, стоящий перед любым ее членом, начиная со второго. (Предыдущий)
Последовательность, в которой конечное число членов. (Конечная)
Способ задания последовательности, который в переводе с латинского означает «возвращаться» . (Рекуррентный)
Числа, образующие последовательность. (Члены)
Последовательность, в которой каждый следующий член больше предыдущего. (Возрастающая)
Способ при котором правило составления последовательности описано словами. (Словесный)
Число, указывающего порядковый номер любого члена последовательности. (Индекс)
Последовательность, в которой каждый последующий член меньше предыдущего. (Убывающая)
-Это … (прогрессия). Верно.
Проверьте ваши ответы и поставьте оценки согласно критериям. (Слайд 5)
(Всё правильно – «5», 1 ошибка – «4», 2-3 ошибки – «3», больше 3 ошибок – «3»)
Что мы сегодня будем изучать? (прогрессии)
- А откуда произошло это слово и что оно означает?
(Краткая историческая справка. Сообщение ученика. Индивидуальное задание) (Слайды 6-8)
Термин «прогрессия» имеет латинское происхождение (progression, что означает «движение вперёд») и был введён римским автором Боэцием (VI в.), и понимался как бесконечная числовая последовательность.
Первые представления об арифметической и геометрической прогрессиях были еще у древних народов. В клинописных вавилонских табличках и египетских папирусах встречаются задачи на прогрессии и указания, как их решать.
У нас в России задачи на прогрессии впервые встречаются в одном из древнейших памятников русского права – в «Русской правде», составленном при Ярославе Мудром в XI веке.
Значительное количество задач на прогрессии имеется в замечательном памятнике начала XVIII века – «Арифметике» Л.Ф.Магницкого. В течение полувека эта книга была основным учебником в России.
- Вы справились с первым испытанием и тем самым преодолели 1 этап. Двигаемся дальше. О каких видах прогрессий шла речь в сообщении? (Арифметической и геометрической)
Сегодня мы изучим одну из них. Предлагаю начать с арифметической прогрессии.
- Тема урока: «Арифметическая прогрессия» (Слайд 9)
3. Этап целеполагания.
-Чтобы знать, к чему стремиться, сформулируйте цель и задачи урока.
Цель: изучить арифметическую прогрессию
Задачи:
изучить определение арифметической прогрессии;
узнать, как задаётся арифметическая прогрессия;
научиться определять, является ли числовая последовательность арифметической прогрессией или нет;
изучить формулу n-го члена арифметической прогрессии;
научиться применять формулу n-го члена арифметической прогрессии при решении задач.
Как вы считаете, какая у меня цель?
(Организовать работу так, чтобы мы смогли справиться со всеми поставленными задачами)(Слайд 10)
4. Этап концептуализации и моделирования.
- Итак, давайте, вернёмся к последовательностям первой группы, назовите ещё раз их общий признак. (Слайд 11)
(Каждый следующий член последовательности получается при прибавлении к предыдущему некоторого числа или два соседних члена отличаются на одно и тоже число).
Это число назвали разностью арифметической прогрессии и обозначают буквой d.
- Обсудите в группах и запишите в черновик определение арифметической прогрессии. Что у вас получилось?
(После того, как причитают все группы)
Откройте учебник на странице 145 и сверьте записанное вами определение с тем, какое приводят авторы учебника. (Прочитать вслух.)
Определение.
Числовую последовательность, каждый член которой, начиная со второго, равен сумме предыдущего члена и одного того же числа d, называют арифметической прогрессией. При этом число d называют разностью прогрессии.
-Запишите его в тетрадь.
- Скажите, чьи определения были точнее?
Фронтальная работа.
Что означает фраза: «Запиши на языке математики»? (Записать с помощью специальных обозначений)
Для обозначения арифметической прогрессии словосочетание «арифметическая прогрессия» заменяют значком и пишут: . (Записать на доске)
Работа в группах. 4 группы. Приложение 2.
Посмотрите внимательно на эти последовательности и ответьте на вопросы (Слайд 12):
Какие из этих последовательностей являются арифметическими прогрессиями и почему?
Назовите первый член и разность арифметической прогрессии.
Назовите возрастающие и убывающие прогрессии.
Выясните, при каком условии прогрессия возрастает или убывает? Сделайте вывод.
(an): 0, 2, 4, 6, 8, …
(bn): 1, 2, 3, 5, 8, …
(cn): -7, -10, -13, -16…
(dn): 5, 5, 5, 5, 5, …
(хn): 3, 5, 7, 9, 6, …
(кn): - 8; -4; 0; 4; 8, …
Проверка по образцу. (Слайд 13) Каждая группа отвечает на один из вопросов.
Ответ:
(an), (cn), (кn), (dn) - арифметические прогрессии
2) (an) - арифметическая прогрессия, у которой а1 = 0, d =2;
(cn) - арифметическая прогрессия, у которой а1 = -7, d =-3;
(кn) - арифметическая прогрессия, у которой а1 = -8, d =4;
(dn) - арифметическая прогрессия, у которой а1 = 5, d =0.
(an). (кn) – возрастающие прогрессии
(cn) – убывающая прогрессия
Арифметическая прогрессия является возрастающей последовательностью, если d >0 и убывающей, если d <0.
(Оценить работу в группе) Всё правильно – «5», 1 ошибка – «4», 2-3 ошибки – «3», больше 3 ошибок – «2».
- Кто выполнил всё верно? У кого были ошибки? У кого есть вопросы по этому заданию, что не понятно?
- Молодцы, вы преодолели следующий этап.
- Чтобы продолжить путь предлагаю решить задачу (Слайд 14). Обсудите её решение в парах.
Курс воздушных ванн начинают с 15 минут в первый день и увеличивают время этой процедуры в каждый следующий день на 5 минут. Какова будет продолжительность ванны на 5 день лечения? (15, 20, 25, 30, 35)
Как вы решили эту задачу? (прибавляли по 5 и взяли пятое число или записали арифметическую прогрессию и взяли пятый член)
- Кто верно решил задачу? Поднимите руки.
Как поступить, если потребуется узнать продолжительность процедуры через месяц лечения? (Аналогично)
Проблема.
- А как упростить решение этой задачи? Что позволяет сразу находить любой член последовательности.
(Эту задачу можно решить быстрее, если удастся найти формулу n-го члена, т. е. перейти к аналитическому заданию арифметической прогрессии.)
- Выведите формулу n-го члена арифметической прогрессии. Для этого рассмотрите арифметическую прогрессию с разностью d, заполните пропуски, выявите закономерность и запишите формулу. Групповая работа. Раздать задания. Приложение 3.
a1 = a1,
a2 = a1 + d
a3 = a2 + d = a1 + d + d = a1 + 2d ,
a4 = …
a5 = .…, и т.д.
Догадайтесь, как найти аn.
an =
Проверьте, что получилось. (Слайд 15)
Оцените свою работу согласно критериям. ( Задание выполнено верно – «5», допущена ошибка в записи формулы – «4», допущена ошибка в заполнении пропусков – «3», допущена ошибка в заполнении пропусков и неверно записана формула «2»)
a1 = a1,
a2 = a1 + d
a3 = a2 + d = a1 + d + d = a1 + 2d ,
a4 = a3 + d = a1 + 2d + d = a1 + 3d,
a5 = a4 + d = a1 + 3d + d = a1 + 4d
и т.д.
an = a1 +(n - 1)d Это формула n-го члена арифметической прогрессии.
Запишите её в тетрадь.
- Кто справился с заданием? У кого были ошибки? Где ошиблись?
Важное замечание! «Догадками » математики пользуются, но в основном для открытия каких-то новых фактов, а не для их обоснования. Доказательство этого факта можно посмотреть дома в учебнике.
4. Этап конструирования.
(Слайд 16)
Какие задачи можно решать, используя формулу an = a1 + d (n-1).
(Найти , , d , n)
Вернёмся к нашей задаче. Как перевести её условие на математический язык? Что известно в задаче? (а1= 15, d = 5)
Что нужно найти? (а30 или а31 в зависимости от того сколько в месяце дней)
- Запишем решение задачи в тетрадь при условии, что в месяце 30 дней.
Показать оформление. (Слайд 17)
Дано: а1= 15, d = 5.
Найти: а30.
Решение: а30 = а1 +(30 – 1) d = 15 + 295 = 15 + 145 = 160
Ответ: а30 = 160.
- Как найти из формулы n-го члена a1, d , n? (Работа в группах)
1 группа a1 = an – (n - 1)d,
2 группа ,
3 группа , .
4 группа . (Более сильная)
В арифметической прогрессии некоторые члены отсутствуют:
-6; а2; 9; а4; 24
Можно ли восстановить пропущенные числа? Если возможно, то выявите закономерность, найдите пропущенные числа и сделайте вывод. Найдите разность арифметической прогрессии.
(а2 = 1,5; а4 = 16,5; d = 7,5
а1; а2; а3; а4;… аn – 1; an; an + 1; … аn = an – 1 + an + 1
2
Каждый член, начиная со второго, равен среднему арифметическому предыдущего и последующего членов.)
Проверим работу 4 группы. [link]
3
Арифметическая прогресия
презентация
Литература
1. Мордкович А.Г. Алгебра. 9 класс.В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений/ А.Г. Мордкович, П.В.Семёнов. – М:Мнемозина, 2010.
2. Мордкович А.Г. Алгебра.9 класс.В 2 ч. Ч. 2. Задачник, для учащихся общеобразовательных учреждений/ А.Г. Мордкович, П.В.Семёнов. – М:Мнемозина, 2010.
3. Александрова Л. А. Алгебра. 9 класс. Самостоятельные работы для общеобразоват. учреждений. Учеб. Пособие под ред. А. Г. Мордковича.- М.: Мнемозина, 2004.
4. Мордкович А. Г.. Алгебра 7-9.: Методическое пособие для учителя.- М.: Мнемозина, 2004
5. Занина О. В.,Данкова И. Н. поурочные разработки по алгебре к учебному комплекту А. Г. Мордковича: 9 класс. – М.:ВАКО,2007.
6. Игнатьева Г.А., М.Н. Крайникова и др. Проектирование и сценирование инновационных форм учебных занятий в условиях введения ФГОС общего образования: Методические рекомендации.-Нижний Новгород:НИРО, 2013.
7. Ким Н.А., Мазурова Н.И. Алгебра. 7-9 классы: рабочие программы по учебникам А.Г. Мордковича, П.В. Семенова. – Волгоград: Учитель, 2012.
Приложение 1
Трансфертный лист.
Ф.И. ______________________
Приложение 2
Посмотрите внимательно на эти последовательности и ответьте на вопросы:
Какие из этих последовательностей являются арифметическими прогрессиями и почему?
Назовите первый член и разность арифметической прогрессии.
Назовите возрастающие и убывающие прогрессии.
Выясните, при каком условии прогрессия возрастает или убывает? Сделайте вывод.
(an): 0, 2, 4, 6, 8, …
(bn): 1, 2, 3, 5, 8, …
(cn): -7, -10, -13, -16…
(dn): 5, 5, 5, 5, 5, …
(хn): 3, 5, 7, 9, 6, …
(кn): - 8; -4; 0; 4; 8, …
Приложение 3
Рассмотрите арифметическую прогрессию с разностью d, заполните пропуски, выявите закономерность и запишите формулу.
,
,
,
,
, и т.д.
Догадайтесь, как найти аn.
Приложение 4
Приложение 5
Закладка