Конспект урока по алгебре на тему Простейшие преобразования графиков функций (10 класс)

Автор публикации:

Дата публикации:

Краткое описание: ...


Итоговый тест по математике за 10 класс

Вариант 1

Часть 1

При выполнении заданий этой части укажите цифру, которая означает выбранный Вами ответ (А1-А10)

А1. Вычислите: [pic]

1) 9 2) 4,5 3) 3 4) 4.

А2. Упростите выражение: [pic]

1) -4 2) 4 3) [pic] 4) [pic] .

АЗ. Упростите выражение: [pic]

1) -2sin2a 2) 2соs2a 3) cos2a 4) 2.

А4. Наибольший из корней уравнения [pic]

1) 2 2) 1 3) -1 4) -4.

А5. Найдите множество значений функции: [pic]

1) [-1;1] 2) [-3;-1] 3) [-2;2] 4) [pic]

А

n®¥

6. Найдите предел: [pic]

1) 3 2) 1 3) ¥ 4) 2.

А7. Найдите количество корней уравнения sin(2p - 2x) = 0, принадлежащих интервалу (0;2p).

1) 5 2) 2 3) 3 4) 4.

А8. Среднее арифметическое корней уравнения ctg2x + ctgx = 0, принадлежащих интервалу (0, 2p)

1) 1 2) 2 3) 3 4) 4

А9. Найдите значение производной функции [pic] в точке x0= -3

1) 4 2) -4 3) 2 4) -2.

А10. Найдите угловой коэффициент касательной к графику функции у = 5 cos x – 3 sin x в точке [pic]

1) [pic] 2) -8 [pic] 3) [pic] 4) [pic]

Часть 2


B1. Сколько корней имеет уравнение (cos x*cos 3x + sin x*sin 3x) [pic] =0

B2. Найдите значение выражения [pic] .

B3. При каком k парабола у=(k-1)х2 +(k+4)х+k+7 касается оси Ох.

B4. Решите задачу: Апофема правильной шестиугольной пирамиды равна h, а двугранный угол при основании равен 60°. Найдите полную поверхность пирамиды.

B5. Составьте уравнение касательной к графику функции [pic] в точке с абсциссой x=2.

Итоговый тест по математике за 10 класс

Вариант 2

Часть 1

При выполнении заданий этой части укажите цифру, которая означает выбранный Вами ответ (А1-А10)

А1. Вычислите: [pic] ,

1) 4,75 2) 8,75 3) 0,875 4) 6,25.

А2. Упростите выражение: [pic]

1) 3 2) -3 3) [pic] 4) [pic] .

АЗ. Упростите выражение: 1 + sin2 -cos2.

1) 2sin2 2) -cos2 3) 1 + cos 2 4) 2.

А4. Наибольший из корней уравнения [pic]

1) -1 2) -3 3) 1 4) 4.

А5. Найдите множество значений функции: у = 2 sin 6x

1) [-1;1] 2) [-6;6] 3) [0;2] 4) [-2;2].

А

n

6. Найдите предел: [pic]

1) 2) 2 3) [pic] 4) 1.

А7. Укажите наименьший положительный корень уравнения tg2( - x) = 3

1) 2) [pic] 3) [pic] 4) 0.

А8. Множество корней уравнения 1 + cos2x = sin x совпадает с множеством корней уравнения:

1) tg x = 0 2) cos x = 0 3) sin x = 1 4) sin x = -1

А9. Найдите значение производной функции [pic] в точке x0= - 4

1) [pic] 2) [pic] 3) [pic] 4) [pic]

А10. Найдите угловой коэффициент касательной к графику функции у = 6 sin x + 2 cos x в точке [pic]

1) -2 2) 2 3) 6 4) -6.

Часть 2

B1. Сколько корней имеет уравнение (соs 5х * соs 3х + sin( - 5х) * sin(2 + Зх)) [pic] = 0?

B2. Найдите значение выражения [pic] .

B3. При каком а парабола у=а х2 - 2 [pic] х + а + 2 касается оси Ох в правой полуплоскости?

B4. Основанием прямой призмы служит ромб. Площади диагональных сечений этой призмы равны P и Q. Найдите боковую поверхность призмы.

B5.Составьте уравнение касательной к графику функции [pic] в точке с абсциссой х=2