Итоговая контрольная работа по геометрии 11 класс (базовый уровень)

Автор публикации:

Дата публикации:

Краткое описание: ...


Итоговая контрольная работа (базовый уровень)

ВАРИАНТ 1

  1. В правильной треугольной пирамиде SABC с вершиной S биссектрисы треугольника ABC пересекаются в точке O. Площадь треугольника ABC равна 2; объем пирамиды равен 6. Найдите длину отрезка OS.

  2. В правильной треугольной пирамиде SABC точка M – середина ребра AB, S – вершина. Известно, что BC = 3, а площадь боковой поверхности пирамиды равна 45. Найдите длину отрезка SM.

  3. Объем первого цилиндра равен 12 м3. У второго цилиндра высота в три раза больше, а радиус основания — в два раза меньше, чем у первого. Найдите объем второго цилиндра. Ответ дайте в кубических метрах.

  4. Вода в сосуде цилиндрической формы находится на уровне h=40 см. На каком уровне окажется вода, если её перелить в другой цилиндрический сосуд, у которого радиус основания вдвое больше, чем у первого? Ответ дайте в сантиметрах.

  5. Высота конуса равна 4, а диаметр основания — 6. Найдите образующую конуса.

  6. Площадь полной поверхности конуса равна 12. Параллельно основанию конуса проведено сечение, делящее высоту пополам. Найдите площадь полной поверхности отсеченного конуса.

  7. Даны два шара. Диаметр первого шара в 8 раз больше диаметра второго. Во сколько раз площадь поверхности первого шара больше площади поверхности второго? 

  8. Найдите площадь боковой поверхности правильной треугольной призмы, вписанной в цилиндр, радиус основания которого равен , а высота равна 2.

  9. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 3 и 4. Площадь поверхности этого параллелепипеда равна 94. Найдите третье ребро, выходящее из той же вершины.

  10. Найдите угол ABD1 прямоугольного параллелепипеда, для которого AB=5, AD=4,AA1 =3. Дайте ответ в градусах.

  11. Два ребра прямоугольного параллелепипеда равны 8 и 2, а объём параллелепипеда равен 144. Найдите площадь поверхности этого параллелепипеда



Итоговая контрольная работа (базовый уровень)

ВАРИАНТ 2

  1. В правильной четырехугольной пирамиде SABCD точка O– центр основания, S– вершина, SO=15, BD=16. Найдите боковое ребро SA.

  2. От треугольной пирамиды, объем которой равен 12, отсечена треугольная пирамида плоскостью, проходящей через вершину пирамиды и среднюю линию основания. Найдите объем отсеченной треугольной пирамиды.

  3. Радиус основания цилиндра равен 2, высота равна 3. Найдите площадь боковой поверхности цилиндра, деленную на π.

  4. Высота бака цилиндрической формы равна 20 см, а площадь его основания 150 квадратных сантиметров. Чему равен объём этого бака (в литрах)? В одном литре 1000 кубических сантиметров.

  5. Высота конуса равна 4, а длина образующей — 5. Найдите диаметр основания конуса.

  6. В сосуде, имеющем форму конуса, уровень жидкости достигает 0,5 высоты. Объём жидкости равен 70 мл. Сколько миллилитров жидкости нужно долить, чтобы полностью наполнить сосуд?

  7. Однородный шар диаметром 3 см имеет массу 162 грамма. Чему равна масса шара, изготовленного из того же материала, с диаметром 2 см? Ответ дайте в граммах.

  8. Найдите площадь боковой поверхности правильной шестиугольной призмы, описанной около цилиндра, радиус основания которого равен , а высота равна 2.

  9. Площадь грани прямоугольного параллелепипеда равна 12. Ребро, перпендикулярное этой грани, равно 4. Найдите объем параллелепипеда.

  10. Найдите угол DBD1 прямоугольного параллелепипеда, для которого AB =4, AD=3, AA1=5. Дайте ответ в градусах.

  11. Два ребра прямоугольного параллелепипеда равны 6 и 4, а объём параллелепипеда равен 240. Найдите площадь поверхности этого параллелепипеда.



ОТВЕТЫ