Реферат по математике по теме:Конические сечения и их применение

Автор публикации:

Дата публикации:

Краткое описание: ...



ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ГОРОДА МОСКВЫ

«КОЛЛЕДЖ ПОЛИЦИИ»







Реферат по дисциплине Математика

На тему: «Конические сечения и их применения в технике»





Выполнила

Курсант 15 взвода

Алексеева А.И



Преподаватель

Зайцева О.Н.







Москва

2016

Содержание:

Введение

1. Понятие конических сечений……………………………………………5

2. Виды конических сечений……………………………………….............7

3. Исследование……………………………………………………………..8

4. Свойства конических сечений…. ……………………………………….9

5. Построение конических сечений……………………………………….10

6. Аналитических подход…………………………………………………14

7. Приминение……………………………………………………………….16

8. Поперек конуса…………………………………………………………..17

Список использованной литературы





















Введение

Конические сечения впервые предложил использовать древнегреческий геометр Менехм, живший в IV веке до нашей эры, при решении задачи об удвоении куба. Эту задачу связывают со следующей легендой.

Однажды на острове Делосе вспыхнула эпидемия чумы. Жители острова обратились к оракулу, который сказал, что для прекращения эпидемии надо увеличить вдвое золотой жертвенник, который имел форму куба и находился в храме Аполлона в Афинах. Островитяне изготовили новый жертвенник, ребра которого были вдвое больше ребер прежнего. Однако чума не прекратилась. Разгневанные жители услышали от оракула, что неверно поняли его предписание — удвоить было надо не ребра куба, а его объём, то есть увеличить ребра куба в раз.

Для получения конических сечений Менехм пересекал конус - остроугольный, прямоугольный или тупоугольный — плоскостью, перпендикулярной одной из образующих. Для остроугольного конуса сечение плоскостью, перпендикулярной к его образующей, имеет форму эллипса. Тупоугольный конус при этом дает гиперболу, а прямоугольный – параболу.

Отсюда произошли и названия кривых, которые были введены Аполлонием Пергским, жившим в III веке до нашей эры: эллипс, что означает изъян, недостаток (угла конуса до прямого); гипербола — преувеличение, перевес (угла конуса над прямым); парабола — приближение, равенство (угла конуса прямому углу). Позже греки заметили, что все три кривые можно получить на одном конусе, изменяя наклон секущей плоскости. При этом следует брать конус, состоящий из двух полостей и мыслить, что они простираются в бесконечность (рис.1)

Если провести сечение кругового конуса, перпендикулярное его оси, а потом поворачивать секущую плоскость, оставляя одну точку её пересечения с конусом неподвижной, то увидим, как окружность будет сначала вытягиваться, превратившись в эллипс. Затем вторая вершина эллипса уйдет в бесконечность, и вместо эллипса получится парабола, а потом плоскость пресечет и вторую полость конуса и получится гипербола.

Долгое время конические сечения не находили применения, пока ими всерьёз не заинтересовались астрономы и физики. Выяснилось, что эти линии встречаются в природе (пример тому — траектории небесных тел) и графически описывают многие физические процессы (здесь лидирует гипербола: вспомним хотя бы закон Ома и закон Бойля-Мариотта), не говоря уже об их применении в механике и оптике. На практике, чаще всего в технике и строительстве, приходится иметь дело с эллипсом и параболой.

[pic] [pic] [pic] рис.1





[pic] эпюр

Понятие конических сечений

Конические сечения - это плоские кривые, которые получаются пересечением прямого кругового конуса плоскостью, не проходящей через его вершину. С точки зрения аналитической геометрии коническое сечение представляет собой геометрическое место точек, удовлетворяющих уравнению второго порядка. За исключением вырожденных случаев, рассматриваемых в последнем разделе, коническими сечениями являются эллипсы, гиперболы или параболы (Рис. 2).

[pic]







Рис.2


При вращении прямоугольного треугольника около одного из катетов, гипотенуза с ее продолжениями описывает коническую поверхность, называемую поверхностью прямого кругового конуса, которая может быть рассматриваема как непрерывный ряд прямых, проходящих через вершину и называемых образующими, причем все образующие опираются на одну и ту же окружность, называемую производящей. Каждая из образующих представляет собой гипотенузу вращающегося треугольника (в известном его положении), продолженную в обе стороны до бесконечности. Таким образом, каждая образующая простирается по обе стороны от вершины, вследствие чего и поверхность имеет две полости: они сходятся в одну точку в общей вершине. Если такую поверхность пересечь плоскостью, то в сечении получится кривая, которая и называется коническим сечением. Она может быть трех типов:

1) если плоскость пересекает коническую поверхность по всем образующим, то рассекается только одна полость и в сечении получается замкнутая кривая, называемая эллипсом;

2) если секущая плоскость пересекает обе полости, то получается кривая, имеющая две ветви и называемая гиперболой;

3) если секущая плоскость параллельна одной из образующих, то получается парабола.

Если секущая плоскость параллельна производящей окружности, то получается окружность, которая может быть рассматриваема как частный случай эллипса. Секущая плоскость может пересекать коническую поверхность только в одной вершине, тогда в сечении получается точка, как частный случай эллипса.

[link]

4. Прасолов В.В.. Геометрия Лобачевского 2004











19