|
Контрольная работа по геометрии на тему Объёмы (11 класс)
Автор публикации: Путилова Е.Б.
Дата публикации: 2016-06-24
Краткое описание: ...
1 вариант Медный куб, ребро которого 10 см, переплавлен в шар. Найдите радиус шара. Внешний диаметр полого шара 18 см, толщина стенок 3 см, найдите объём стенок. Объём шара равен 36π см³. Найдите площадь сферы, ограничивающей данный шар. Апофема правильной треугольной пирамиды равна 4 см, а двугранный угол при основании равен 60º. Найдите объём пирамиды. В цилиндр вписана призма. Основанием призмы служит прямоугольный треугольник, катет которого равен 2а, а прилежащий угол 30º. Диагональ большей боковой грани призмы составляет с плоскостью основания угол в 45º. Найдите объём цилиндра. Основание прямого параллелепипеда ромб с периметром 40 см. Одна из диагоналей ромба равна 12 см. Найдите объём параллелепипеда, если его большая диагональ равна 20 см. Плоский угол при вершине правильной четырёхугольной пирамиды равен ά, а боковое ребро равно l. Найдите объём конуса, вписанного в пирамиду.
2 вариант Свинцовый шар, диаметр которого 20 см, переплавлен в шарики с диаметром в 10 раз меньше. Сколько таких шариков получилось? Поверхность шара равна 225π м². Определите его объём. Чему равен объём шара, описанного около куба с ребром 2 ? Боковое ребро правильной треугольной пирамиды равно 6 см и составляет с плоскостью основания угол в 60º. Найдите объём пирамиды. В конус вписана пирамида. Основанием служит прямоугольный треугольник, катет которого равен 2а, а прилежащий угол равен 30º. Боковая грань пирамиды, проходящая через данный катет, составляет с плоскостью основания угол в 45º. Найдите объём конуса. Основанием прямого параллелепипеда является ромб с периметром 40 см. Боковое ребро параллелепипеда равно 9 см, а одна из диагоналей 15 см. Найдите объём параллелепипеда. Двугранный угол при основании пирамиды равен ά . Высота пирамиды равна Н. Найдите объём конуса, вписанного в пирамиду.
1 варант 1. Медный куб, ребро которого 10 см, переплавлен в шар. Найдите радиус шара. Внешний диаметр полого шара 18 см, толщина стенок 3 см, найдите объём стенок. Объём шара равен 36π см³. Найдите площадь сферы, ограничивающей данный шар. Апофема правильной треугольной пирамиды равна 4 см, а двугранный угол при основании равен 60º. Найдите объём пирамиды. В цилиндр вписана призма. Основанием призмы служит прямоугольный треугольник, катет которого равен 2а, а прилежащий угол 30º. Диагональ большей боковой грани призмы составляет с плоскостью основания угол в 45º. Найдите объём цилиндра. Основание прямого параллелепипеда ромб с периметром 40 см. Одна из диагоналей ромба равна 12 см. Найдите объём параллелепипеда, если его большая диагональ равна 20 см. Плоский угол при вершине правильной четырёхугольной пирамиды равен ά, а боковое ребро равно l. Найдите объём конуса, вписанного в пирамиду.
2 вариант 1. Свинцовый шар, диаметр которого 20 см, переплавлен в шарики с диаметром в 10 раз меньше. Сколько таких шариков получилось? Поверхность шара равна 225π м². Определите его объём. Чему равен объём шара, описанного около куба с ребром 2 ? Боковое ребро правильной треугольной пирамиды равно 6 см и составляет с плоскостью основания угол в 60º. Найдите объём пирамиды. В конус вписана пирамида. Основанием служит прямоугольный треугольник, катет которого равен 2а, а прилежащий угол равен 30º. Боковая грань пирамиды, проходящая через данный катет, составляет с плоскостью основания угол в 45º. Найдите объём конуса. Основанием прямого параллелепипеда является ромб с периметром 40 см. Боковое ребро параллелепипеда равно 9 см, а одна из диагоналей 15 см. Найдите объём параллелепипеда. Двугранный угол при основании пирамиды равен ά . Высота пирамиды равна Н. Найдите объём конуса, вписанного в пирамиду.
1 варант 1. Медный куб, ребро которого 10 см, переплавлен в шар. Найдите радиус шара. Внешний диаметр полого шара 18 см, толщина стенок 3 см, найдите объём стенок. Объём шара равен 36π см³. Найдите площадь сферы, ограничивающей данный шар. Апофема правильной треугольной пирамиды равна 4 см, а двугранный угол при основании равен 60º. Найдите объём пирамиды. В цилиндр вписана призма. Основанием призмы служит прямоугольный треугольник, катет которого равен 2а, а прилежащий угол 30º. Диагональ большей боковой грани призмы составляет с плоскостью основания угол в 45º. Найдите объём цилиндра. Основание прямого параллелепипеда ромб с периметром 40 см. Одна из диагоналей ромба равна 12 см. Найдите объём параллелепипеда, если его большая диагональ равна 20 см. Плоский угол при вершине правильной четырёхугольной пирамиды равен ά, а боковое ребро равно l. Найдите объём конуса, вписанного в пирамиду.
2 вариант 1. Свинцовый шар, диаметр которого 20 см, переплавлен в шарики с диаметром в 10 раз меньше. Сколько таких шариков получилось? Поверхность шара равна 225π м². Определите его объём. Чему равен объём шара, описанного около куба с ребром 2 ? Боковое ребро правильной треугольной пирамиды равно 6 см и составляет с плоскостью основания угол в 60º. Найдите объём пирамиды. В конус вписана пирамида. Основанием служит прямоугольный треугольник, катет которого равен 2а, а прилежащий угол равен 30º. Боковая грань пирамиды, проходящая через данный катет, составляет с плоскостью основания угол в 45º. Найдите объём конуса. Основанием прямого параллелепипеда является ромб с периметром 40 см. Боковое ребро параллелепипеда равно 9 см, а одна из диагоналей 15 см. Найдите объём параллелепипеда. Двугранный угол при основании пирамиды равен ά . Высота пирамиды равна Н. Найдите объём конуса, вписанного в пирамиду.
|
|