Муниципальное бюджетное общеобразовательное учреждение
средняя школа № 9 г. Ярцево Смоленской области
Согласовано Утверждаю
Замдиректора по УВР _______ Е.В.Шустова Директор школы _______ Е.А. Хайкова
___.____.20____ ____._____. 20___
[pic]
Учитель: Борисова Ольга Михайловна
Категория: высшая
Рассмотрено
Руководитель МО предметов
естественно математического цикла
и информатики
__________________ И. И. Дроздова
Протокол от ______________ № ____
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Предлагаемый элективный курс «Функции помогают уравнениям» составлен на основе авторской программы заслуженного учителя РФ Ю.В. Лепехина с одноименным названием, является предметно-ориентированным и предназначен для учащихся 11 класса общеобразовательных учреждений.
Данный элективный курс «Функции помогают уравнениям» предназначен для расширения теоретических и практических знаний учащихся в 11 классе.
Функциональная линия просматривается в курсе алгебры, начиная с 7 класса. Возникает потребность обобщить, дополнить и систематизировать вопросы, связанные с областью определения функции, множеством значений, четностью и нечетностью функций. Многие задания ЕГЭ требуют аккуратного применения вопросов, связанных с периодичностью функций, их монотонностью, нахождением промежутков убывания и возрастания, точек экстремума и экстремумов функций. К 11 классу у обучающихся накапливается существенный арсенал различных математических функций, в курсе информатики они получают представление еще о целом ряде математических функций.
В последние годы в связи с появлением новых форм итоговой аттестации обучающихся особенно важным становится творческое и осмысленное освоение идей функциональной зависимости.
На ЕГЭ появились новые виды заданий, решение которых не возможно без усвоения свойств функций.
Элективный курс «Функции помогают уравнениям» ориентирован на изучение и применение разнообразных свойств функции при решении уравнений и неравенств.
В ходе изучения элективного курса значительное внимание нужно уделить самостоятельной работе учащегося. Поэтому в большинстве тем, предлагаемых для изучения, помещены материалы для самостоятельной работы учащегося.
Цель данного элективного курса – систематизация приемов использования свойств функций при решении уравнений и неравенств. Представить единым целым все вопросы, связанные с применением свойств математических функций при решении самых разнообразных математических задач.
Задачи курса:
овладение системой знаний о свойствах функций;
формирование логического мышления учащихся;
формирование опыта творческой деятельности учащихся через исследовательскую деятельность при решении нестандартных задач;
формирование навыка работы с научной литературой, использования различных интернет-ресурсов;
развитие коммуникативных и общеучебных навыков работы в группе, самостоятельной работы, умений вести дискуссию, аргументировать ответы и т.д.
формирование устойчивого интереса к предмету, выявление и развитие математических способностей, ориентация на профессии, существенным образом связанные с математикой формированию логического мышления учащихся;
подготовка учащихся к сдаче ЕГЭ и поступлению в ВУЗы;
повысить математическую культуру учащихся при решении уравнений и неравенств с использованием свойств функций.
Курс имеет общеобразовательное значение, способствует развитию логического мышления учащихся. Формальная цель данного элективного курса – подготовить выпускников средней школы к сдаче ЕГЭ и продолжению образования в вузах, где дисциплины математического цикла относятся к числу ведущих, профилирующих.
Программа данного элективного курса ориентирована на приобретение определенного опыта решения задач, связанных со знанием свойств функции. Изучение данного курса тесно связано с такими дисциплинами, как алгебра, алгебра и начала анализа.
Структура курса.
Данный курс рассчитан на 34 часа. Включенный в программу материал предполагает повторение и углубление следующих разделов: алгебра, алгебра и начала анализа
Способы задания функции. Область ее определения и область значения функции.
Основные свойства функций (четность и нечетность, периодичность, монотонность).
Использование области определения и множества значений функций при решении уравнений.
Применение различных свойств функции к решению уравнений.
Применение свойств функций к решению неравенств.
Нестандартные задания по теме «Функции помогают уравнениям».
Основные методические особенности курса.
Подготовка по тематическому принципу, соблюдая «правила спирали» от простых типов заданий до заданий повышенной сложности;
Работа с тематическими тестами, выстроенными в виде логически взаимосвязанной системы, где из одного вытекает другое, т.е. правильно решенное предыдущее задание готовит понимание смысла следующего; выполненный сегодня тест готовит к пониманию и правильному выполнению завтрашнего и т. д.;
Работа с тренировочными тестами в режиме «теста скорости»;
Работа с тренировочными тестами в режиме максимальной нагрузки, как по содержанию, так и по времени для всех школьников в равной мере;
Максимальное использование наличного запаса знаний, применяя различные «хитрости» и «правдоподобные рассуждения», для получения ответа простым и быстрым способом.
Формы организации учебных занятий.
Формы проведения занятий включают в себя лекция учителя, беседа, практикум, консультация, работа с компьютером. Основной тип занятий исследовательский или частично – поисковый. Каждая тема курса начинается с постановки задачи. Теоретический материал излагается в форме мини лекции. После изучения теоретического материала выполняются практические задания для его закрепления. Занятия строятся с учётом индивидуальных особенностей обучающихся, их темпа восприятия и уровня усвоения материала. Контрольные замеры обеспечивают эффективную обратную связь, позволяющую обучающим и обучающимся корректировать свою деятельность. Систематическое повторение способствует более целостному осмыслению изученного материала, поскольку целенаправленное обращение к изученным ранее темам позволяет учащимся встраивать новые понятия в систему уже освоенных знаний.
Формы контроля.
Планируемые результаты.
В результате изучения данных тем учащиеся должны знать:
понятие функции;
способы задания функции;
методы решения более сложных задач, применяя характерные свойства функций (область определения и множества значений функции; четность и нечетность, периодичность функции; свойство монотонности функций)
способы построения графиков функций, чтение графиков.
уметь:
решать задачи, связанные с областью определения функции, множеством значений, четностью и нечетностью функций, уравнения и неравенства с использованием свойств функций;
решать задачи на наименьшее и наибольшее значение функции;
строить графики функций с использованием свойств функций;
исследовать функцию по заданному графику.
Учащийся должен владеть:
Изучение данного курса дает учащимся возможность:
повторить и систематизировать ранее изученный материал школьного курса математики;
освоить основные приемы решения задач;
овладеть навыками построения и анализа предполагаемого решения поставленной задачи;
познакомиться и использовать на практике нестандартные методы решения задач;
повысить уровень своей математической культуры, творческого развития, познавательной активности;
познакомиться с возможностями использования электронных средств обучения, в том числе Интернет-ресурсов;
усвоить основные приемы и методы решения уравнений, неравенств, систем уравнений с параметрами;
применять алгоритм решения уравнений, неравенств, содержащих параметр;
проводить полное обоснование при решении задач с параметрами;
овладеть исследовательской деятельностью.
При решении задач данного курса одновременно активно реализуются основные методические принципы:
принцип параллельности – следует постоянно держать в поле зрения несколько тем, постепенно продвигаясь по ним вперед и вглубь;
принцип вариативности – рассматриваются различные приемы и методы решения с различных точек зрения: стандартность и оригинальность, объем вычислительной и исследовательской работы;
принцип самоконтроля – невозможность подстроиться под ответ вынуждает делать регулярный и систематический анализ своих ошибок и неудач;
принцип регулярности – увлеченные математикой дети с удовольствием дома индивидуально исследуют задачи, т. е. занятия математикой становятся регулярными, а не от случая к случаю на уроках.
принцип последовательного нарастания сложности.
Основное содержание курса.
Тема 1. Способы задания функции. Область ее определения и область значения функции (3 часов)
Определение функции, графика функции. Способы задания функций: графический, аналитический, табличный, параметрический, словесный. Область определения функции. Область значения функции. Историческая справка.
Основная цель – систематизировать и обобщить знания обучающихся по теме «Функция», полученные ими в 7-10 классах; рассмотреть способы задания функций; дать историческую справку о введении термина «функция» и «график функции»; рассмотреть примеры на нахождение области определения и множества значений функции.
Тема 2. Основные свойства функций (9 часов)
Наибольшее и наименьшее значение функции. Четные и нечетные функции. Периодические функции. Свойство монотонности функций.
Основная цель – повторить основные свойства функции; научить обучающихся применять известные им свойства при исследовании более сложных функций и при решении задач на нахождение наибольшего и наименьшего значений функции.
Тема 3. Использование области определения и множества значений функций при решении уравнений (6 часов)
Использование области определения функций при решении иррациональных, логарифмических, дробно рациональных уравнений. Графический способ решения уравнений.
Использование множества значений функций при решении уравнений. «Метод мажорант» (метод крайних). Равносильность уравнений. Решение задач с параметрами с учетом области значений функции.
Основная цель – научить применять равносильность уравнений при решении уравнений; свойства функций при решении уравнений, содержащих параметры.
Тема 4. Применение различных свойств функции к решению уравнений
(7 часов)
Метод оценок при решении уравнений. Графический метод. Метод крайних значений Применение стандартных неравенств при решении уравнений.
Основная цель – выработать умение решать уравнения различного уровня сложности наиболее рациональным способом.
Тема 5. Применение свойств функций к решению неравенств (3 часа)
Использование области определения функций при решении иррациональных, логарифмических, дробно рациональных неравенств. Метод оценки при решении неравенств. Нахождение целого количества решений неравенства.
Основная цель – повторить известные способы решения неравенств. Показать на примерах решение сложных неравенств различными способами, связанных с необходимостью использования области определения и множества значений функции
Тема 6. Нестандартные задания по теме «Функции помогают уравнениям» (2 часа)
Решение уравнений и неравенств части С, предлагаемых на ЕГЭ.
Основная цель – расширить и систематизировать знания учащихся по теме «Функция», создать условия для более осмысленного понимания теоретических сведений и применению их на практике.
Тема 7. Подготовка к ЕГЭ (4 часа)
СПИСОК ЛИТЕРАТУРЫ
Математика.10-11 классы. Функции помогают уравнениям: элективный курс / авт.-сост. Ю.В. Лепехин. – Волгоград: Учитель, 2009. – 187с.
ЕГЭ 2012. Математика. ЕГЭ. 3000 задач с ответами по математике. Все задания группы В. Под ред. Семенова А.Л., Ященко И.В. М.: Экзамен, 2012 - 544 с.
ЕГЭ 2012. Математика. Задачи с параметрами при подготовке к ЕГЭ. Высоцкий В.С. М.: Экзамен, 2011 - 316 с.
ЕГЭ 2012. Математика. 1000 задач с ответами и решениями по математике. Все задания группы С. Сергеев И.Н., Панферов В.С. М.: Экзамен, 2012 - 304 с.
Алгебра и начала анализа. 10 класс. В 2 ч. Ч. 1: учебник для общеобразоват. учреждений (профильный уровень) / А.Г. Мордкович, П.В. Семенов. 4-е изд., доп. – М.: Мнемозина, 2007.
Алгебра и начала анализа. 10 класс. В 2 ч. Ч. 2: задачник для общеобразовательных учреждений (профильный уровень) / [А.Г. Мордкович и др.]; под ред. А.Г. Мордковича. 4-е изд., испр. – М.: Мнемозина, 2007.
Интернет-источники:
Открытый банк задач ЕГЭ:
[link]