27
Муниципальное образование Гулькевичский район, пос. Ботаника
Муниципальное бюджетное общеобразовательное учреждение
средняя общеобразовательная школа №25 пос. Ботаника
- УТВЕРЖДЕНО
решением педсовета
от 28 .08.2015 года протокол № 1
Председатель педсовета
___________ Н.В. Ручкина
РАБОЧАЯ ПРОГРАММА
По математике
Уровень образования (класс) основное общее образование, 5- 6 классы
Количество часов 340
Учитель Новикова Надежда Константиновна
Программа разработана на основе примерной программы по учебным предметам. Математика. 5-9 классы - М.: «Просвещение», 2011г. и примерной программы к УМК Н.Я. Виленкина и др. «Математика. Сборник рабочих программ. 5-6 классы» (сост. Т.А. Бурмистрова - М.: «Просвещение», 2014 г
I. Пояснительная записка.
Рабочая программа составлена на основе:
1. Федерального государственного образовательного стандарта основного общего образования, утвержденного приказом Министерства образования и науки РФ от 17 декабря 2010 года № 1897.
2. Основной образовательной программы МБОУ CОШ № 25.
3. Примерной программы по математике. «Примерные программы по учебным предметам. Математика. 5-9 классы - М.: «Просвещение», 2011.
4. Примерной программы к УМК Н.Я. Виленкина и др. «Математика. Сборник рабочих программ. 5-6 классы» (сост. Т.А. Бурмистрова - М.: «Просвещение», 2014)
Цели изучения:
овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.
Задачи обучения:
приобретение математических знаний и умений;
овладение обобщенными способами мыслительной, творческой деятельности;
освоение компетенций(учебно-познавательной, коммуникативной, рефлексивной, личностного саморазвития, информационно-технологической, ценностно- смысловой).
Сознательное овладение учащимися системой арифметических знаний и умений необходимо в повседневной жизни, для изучения смежных дисциплин и продолжения образования.
Практическая значимость школьного курса математики 5—6 классов обусловлена тем, что объектом изучения служат количественные отношения действительного мира. Матема-тическая подготовка необходима для понимания принципов устройства и использования современной техники, восприятия научных и технических понятий и идей. Математика — язык науки и техники. С её помощью моделируются и изучаются явления и процессы, происходящие в природе.
Арифметика является одним из опорных предметов основной школы: она обеспечивает изучение других дисциплин. В первую очередь это относится к предметам естественно- научного цикла, в частности к физике. Развитие логического мышления учащихся при обучении математике в 5—6 классах способствует усвоению предметов гуманитарного цикла. Практические умения и навыки арифметического характера необходимы для тру-довой и профессиональной подготовки школьников.
Развитие у учащихся правильных представлений о сущности и происхождении арифметических абстракций, о соотношении реального и идеального, о характере отражения математической наукой явлений и процессов реального мира, о месте арифметики в системе наук и роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения учащихся, а также формированию качеств мышления, необходимых для адаптации в современном информационном обществе.
Требуя от учащихся умственных и волевых усилий, концентрации внимания, активности воображения, арифметика развивает нравственные черты личности (настойчивость, целеустремленность, творческую активность, самостоятельность, ответственность, трудолюбие, дисциплину и критичность мышления) и умение аргументировано отстаивать свои взгляды и убеждения, а также способность принимать самостоятельные решения. Активное использование и решение текстовых задач на всех этапах учебного процесса развивают творческие способности школьников.
Изучение математики в 5—6 классах позволяет формировать умения и навыки умственного труда: планирование своей работы, поиск рациональных путей её выполнения, критическую оценку результатов. В процессе изучения математики школьники учатся излагать свои мысли ясно и исчерпывающе, лаконично и ёмко, приобретают навыки чёткого, аккуратного и грамотного выполнения математических записей.
Важнейшей задачей школьного курса арифметики является развитие логического мышления учащихся. Сами объекты математических умозаключений и принятые в арифметике правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить чёткие определения, развивают логическую интуицию, кратко и наглядно раскрывают механизм логических построений и учат их применению. Показывая внутреннюю гармонию математики, формируя понимание красоты и изящества математических рассуждений, арифметика вносит значительный вклад в эстетическое воспитание учащихся.
II. Общая характеристика курса математики в 5-6 классах
В курсе математики 5—6 классов можно выделить следующие основные содержательные линии: арифметика; элементы алгебры; вероятность и статистика; наглядная геометрия. Наряду с этим в содержание включены две дополнительные методологические темы: множества и математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и общекультурного развития учащихся. Содержание каждой из этих тем разворачивается в содержательно-методическую линию, пронизывающую все основные содержательные линии. При этом первая линия — «Множества» — служит цели овладения учащимися некоторыми элементами универсального математического языка, вторая — «Математика
в историческом развитии» — способствует созданию общекультурного, гуманитарного фона изучения курса.
Содержание линии «Арифметика» служит фундаментом для дальнейшего изучения учащимися математики и смежных дисциплин, способствует развитию не только вычислительных навыков, но и логического мышления, формированию умения пользоваться алгоритмами, способствует развитию умений планировать и осуществлять деятельность, направленную на решение задач, а также приобретению практических навыков, необходимых в повседневной жизни.
Содержание линии «Элементы алгебры» систематизирует знания о математическом языке, показывая применение букв для обозначения чисел и записи свойств арифметических действий, а также для нахождения неизвестных компонентов арифметических действий.
Содержание линии «Наглядная геометрия» способствует формированию у учащихся первичных представлений о геометрических абстракциях реального мира, закладывает основы формирования правильной геометрической речи, развивает образное мышление и пространственные представления.
Линия «Вероятность и статистика» — обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим прежде всего для формирования у учащихся функциональной грамотности — умения воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах.
При изучении вероятности и статистики обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.
III. Место курса математики в 5- 6- классах в учебном плане
Согласно базисному учебному плану МБОУСОШ №25 на изучение математики в 5-6 классах отводится всего 340 часов.
Количество часов в неделю
Всего за год
5 класс
5
170
6 класс
5
170
IV. Личностные, метапредметные и предметные результаты освоения содержания курса
Программа позволяет добиваться следующих результатов освоения образовательной программы основного общего образования:
личностные:
1) ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;
2) формирования коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, учебно-исследовательской, творче-ской и других видах деятельности;
3) умения ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
4) первоначального представления о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;
5) критичности мышления, умения распознавать логически некорректные высказывания, отличать гипотезу от факта;
6) креативности мышления, инициативы, находчивости, активности при решении арифметических задач;
7) умения контролировать процесс и результат учебной математической деятельности;
8) формирования способности к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
метапредметные:
1) способности самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
2) умения осуществлять контроль по образцу и вносить необходимые коррективы;
3) способности адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;
4) умения устанавливать причинно-следственные связи; строить логические рассуждения, умозаключения (индуктивные, дедуктивные и по аналогии) и выводы;
5) умения создавать, применять и преобразовывать зна-ково-символические средства, модели и схемы для решения учебных и познавательных задач;
6) развития способности организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участ-ников, взаимодействовать и находить общие способы работы; умения работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта ин-тересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;
7) формирования учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);
8) первоначального представления об идеях и о методах математики как об универсальном языке науки и техники;
9) развития способности видеть математическую задачу в других дисциплинах, в окружающей жизни;
10) умения находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
11) умения понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
12) умения выдвигать гипотезы при решении учебных задач и понимания необходимости их проверки;
13) понимания сущности алгоритмических предписаний и умения действовать в соответствии с предложенным алгоритмом;
14) умения самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
15) способности планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
предметные:
1) умения работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), развития способности обосновывать суждения, проводить классификацию;
2) владения базовым понятийным аппаратом: иметь представление о числе, дроби, процентах, об основных геометрических объектах (точка, прямая, ломаная, угол, мно-гоугольник, многогранник, круг, окружность, шар, сфера и пр.), формирования представлений о статистических закономерностях в реальном мире и различных способах их изучения;
3) умения выполнять арифметические преобразования рациональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;
4) умения пользоваться изученными математическими формулами;
5) знания основных способов представления и анализа статистических данных; умения решать задачи с помощью перебора всех возможных вариантов;
6) умения применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов.
V. Содержание учебного курса математики в 5 - 6 классах
АРИФМЕТИКА
Натуральные числа. Натуральный ряд. Десятичная система счисления. Арифметические действия с натуральными числами. Свойства арифметических действий. Понятие о степени с натуральным показателем. Квадрат и куб числа. Числовые выражения, значение числового выражения. Порядок действий в числовых выражениях, использование скобок. Решение текстовых задач арифметическими способами. Делители и кратные. Наибольший общий делитель; наименьшее общее кратное. Свойства делимости. Признаки делимости на 2, 3, 5, 9, 10. Простые и составные числа. Разложение натурального числа на простые множители. Деление с остатком.
Дроби. Обыкновенные дроби. Основное свойство дроби. Сравнение обыкновенных дробей. Арифметические действия с обыкновенными дробями. Нахождение части от целого и целого по его части. Десятичные дроби. Сравнение десятичных дробей. Арифметические действия с десятичными дробями. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной. Отношение. Пропорция; основное свойство пропорции. Проценты; нахождение процентов от величины и величины по её процентам; выражение отношения в процентах. Решение текстовых задач арифметическими способами.
Рациональные числа. Положительные и отрицательные числа, модуль числа. Изображение чисел точками координатной прямой; геометрическая интерпретация модуля числа. Множество целых чисел. Множество рациональных чисел. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Свойства арифметических действий.
Измерения, приближения, оценки. Зависимости между величинами. Единицы измерения длины, площади, объёма, массы, времени, скорости. Примеры зависимостей между величинами скорость, время, расстояние; производительность, время, работа; цена, количество, стоимость и др. Представление зависимостей в виде формул. Вычисления по формулам. Решение текстовых задач арифметическими способами.
ЭЛЕМЕНТЫ АЛГЕБРЫ
Использование букв для обозначения чисел; для записи свойств арифметических действий. Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Уравнение, корень уравнения. Нахождение неизвестных компонентов арифметических действий. Декартовы координаты на плоскости. Построение точки по её координатам, определение координат точки на плоскости. ОПИСАТЕЛЬНАЯ СТАТИСТИКА. ВЕРОЯТНОСТЬ.
КОМБИНАТОРИКА. МНОЖЕСТВА
Представление данных в виде таблиц, диаграмм. Понятие о случайном опыте и событии. Достоверное и невозможное события. Сравнение шансов. Решение комбинаторных задач перебором вариантов. Множество, элемент множества. Пустое множество. Подмножество. Объединение и пересечение множеств. Иллюстрация отношений между множествами с помощью диаграмм Эйлера — Венна.
НАГЛЯДНАЯ ГЕОМЕТРИЯ
Наглядные представления о фигурах на плоскости: прямая, отрезок, луч, угол, ломаная, многоугольник, правильный мноник, квадрат. Треугольник, виды треугольников. Изображение геометрических фигур. Взаимное расположение двух прямых, двух окружностей, прямой и окружности. Длина отрезка, ломаной. Периметр многоугольника. Единицы измерения длины. Измерение длины отрезка, построение отрезка заданной длины. Угол. Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира. Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника, квадрата. Равновеликие фигуры. Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники, правильные многогранники. Примеры развёрток многогранников, цилиндра и конуса. Понятие объёма; единицы объёма. Объём прямоугольного параллелепипеда, куба. Понятие о равенстве фигур. Центральная, осевая и зеркальная симметрии. Изображение симметричных фигур.
МАТЕМАТИКА В ИСТОРИЧЕСКОМ РАЗВИТИИ
История формирования понятия числа: натуральные числа, дроби, недостаточность рациональных чисел для геометрических измерений, иррациональные числа. Старинные системы записи чисел. Дроби в Вавилоне, Египте, Риме. Открытие десятичных дробей. Старинные системы мер. Десятичные дроби и метрическая система мер. Появление отрицательных чисел и нуля. Л. Магницкий. Л. Эйлер.
VI. Тематическое планирование с определением основных видов деятельности
5 класс - 5 часов в неделю
[link]
VIII. Планируемые результаты изучения курса математики в 5- 6 классах
Рациональные числа
Ученик научится:
1) понимать особенности десятичной системы счисления;
2) владеть понятиями, связанными с делимостью натуральных чисел;
3) выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;
4) сравнивать и упорядочивать рациональные числа;
5) выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применение калькулятора;
6) использовать понятия и умения, связанные с пропорциональностью величин, процентами в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты.
Ученик получит возможность:
1) познакомиться с позиционными системами счисления с основаниями, отличными от 10;
2) углубить и развить представления о натуральных числах и свойствах делимости;
3) научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.
Действительные числа
Ученик научится:
использовать начальные представления о множестве действительных чисел.
Ученик получит возможность:
1) развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в человеческой практике;
2) развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).
Измерения, приближения, оценки
Ученик научится: использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.
Ученик получит возможность:
1) понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближён-ных значений, содержащихся в информационных источниках, можно судить о погрешности приближения;
2) понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.
Наглядная геометрия
Ученик научится:
1) распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;
2) распознавать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;
3) строить развёртки куба и прямоугольного параллелепипеда;
4) определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;
5) вычислять объём прямоугольного параллелепипеда.
Ученик получит возможность:
1) вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;
2) углубить и развить представления о пространственных геометрических фигурах;
3) применять понятие развёртки для выполнения практических расчётов
Согласовано Протокол заседания МО учителей ЕМЦ
от___________2015года № 1
Руководитель МО МБОУСОШ№25
___________ Н.К.Новикова
Согласовано
заместитель
директора по УВР МБОУСОШ№25
_______ Г.А. Кобрина
________________2015года
Приложение 1
Система оценивания
Знания, умения и навыки учащихся по математике оцениваются по результатам устного опроса, текущих и итоговых письменных работ. Содержание материала, усвоение которого проверяется и оценивается, определяется программой по математике. С помощью итоговых контрольных работ за год проверяется усвоение основных наиболее существенных вопросов программного материала каждого года обучения. При проверке выявляются не только осознанность знаний и сформированность навыков, но и умения применять их к решению учебных и практических задач.
Работа, состоящая из примеров:
Отметка "5" – без ошибок.
Отметка "4" – 1 грубая и 1-2 негрубые ошибки.
Отметка "3" – 2-3 грубые и 1-2 негрубые ошибки или 3 -5 негрубых ошибки.
Отметка "2" – 4 и более грубых ошибки.
Работа, состоящая из задач
Отметка "5" – без ошибок.
Отметка "4" –1-2 негрубые ошибки.
Отметка "3" –1 грубая и 3-4 и более негрубых ошибки.
Отметка "2" – 2 и более грубых ошибки.
Комбинированная работа:
Отметка "5" – без ошибок.
Отметка "4" – 1 грубая и 1-2 негрубые ошибки, при этом грубых ошибок не должно быть в задаче.
Отметка "3" – 2-3 грубые и 3-4 негрубые ошибки, при этом ход решения должен быть верным. Отметка "2" – 4 и более грубых ошибки.
Контрольный устный счет:
Отметка "5" – без ошибок.
Отметка "4" – 1-2 ошибки.
Отметка "3" – 3-4 ошибки.
Отметка "2" – 5 и более ошибок.
Грубые ошибки:
1.Вычислительные ошибки в примерах и задачах.
2.Ошибки на незнание порядка выполнения арифметических действий.
3. Неправильное решение задачи (пропуск действия, неправильный выбор действий, лишние действия).
4. Не решена до конца задача или пример.
5. Невыполненное задание.
Негрубые ошибки:
1. Нерациональный прием вычислений.
2. Неправильная постановка вопроса к действию при решении задачи.
3. Неверно сформулированный ответ задачи.
4. Неправильное списывание данных (чисел, знаков).
5. Не доведение до конца преобразований.
Шкала оценивания тестовых заданий:
Тестовые оценки, как правило, следует переводить в пятибалльную систему. Обычно, перевод осуществляется по следующей схеме:
● оценка "5" (отлично) выставляется за верные ответы, которые составляют 91 % и более от общего количества вопросов;
● оценка "4" (хорошо) соответствует работе, которая содержит от 71 % до 90 % правильных ответов;
● оценка "3" (удовлетворительно) от 50 % до 70 % правильных ответов;
● работа, содержащая менее 50 % правильных ответов оценивается как неудовлетворительная.
Примечания: 1.За грамматические ошибки, допущенные в работе, оценка по математике не снижается. 2.За неряшливо оформленную работу, несоблюдение правил каллиграфии оценка по математике снижается на 1 балл, но не ниже "3". 3.Учащимся, имеющим нарушения моторики, левшам не снижается оценка за почерк и качество выполняемых построений геометрических объектов.