Понятие рациональной дроби
Цели: ввести понятия «дробное выражение» и «рациональная дробь»; формировать умение находить значения рациональных дробей при заданных значениях переменных.
Ход урока
I. Организационный момент.
II. Устная работа.
– Назовите дробь, соответствующую данному частному:
а) 3 : 7 б) 18 : 5
в) 20 : 30
г) 4 : 12
д) –2 : 9
е) 3 : (–8)
ж) –5 : (–11)
з) –2 : (–4)
III. Объяснение нового материала.
Объяснение проводить согласно пункту учебника, обращая внимание на усвоение учащимися основных понятий. Для контроля предложить учащимся задание на распознавание различных рациональных выражений.
З а д а н и е. Какие из следующих рациональных выражений являются целыми, а какие – дробными?
а) [pic] ; д) [pic] ;
б) [pic] ; е) [pic] ;
в) [pic] ; ж) [pic] ;
г) [pic] ; з) [pic] .
– Какие из дробных выражений являются рациональными дробями?
З а м е ч а н и е. Вопрос о допустимых значениях переменных, входящих в рациональное выражение, целесообразно подробно изучить на следующем уроке.
IV. Формирование умений и навыков.
1. № 1 (устно).
2. № 3, № 4, № 5 (а).
При вычислениях необходимо следить, чтобы учащиеся грамотно и подробно выполняли все записи.
О б р а з е ц о ф о р м л е н и я:
№ 5 (а).
[pic] ; а = –3, b = –1.
[pic] 1,5.
3. № 7 (а), № 8.
В случаях затруднения учащихся при выполнении этих заданий нужно напомнить им, что для выражения переменной из формулы достаточно рассматривать эту переменную как неизвестную величину.
4. № 9, № 16.
V. Итоги урока.
В о п р о с ы у ч а щ и м с я:
– Какое выражение называется целым? дробным?
– Как называются целые и дробные выражения?
– Что такое рациональная дробь?
– Всякая ли рациональная дробь является дробным выражением? Приведите примеры.
– Как найти значение рациональной дроби при заданных значениях входящих в неё переменных?
Домашнее задание: № 2