Практическое занятие : «Параллелепипед. Построение сечений параллелепипеда ».
1. Цель практической работы: . Закрепить знания теоретического материала о многогранниках, навыки решения задач на построение сечений, умения анализировать чертеж.
2.Дидактическое оснащение практической работы: АРМ, модели и развёртки многогранников, измерительные инструменты, ножницы, клей, плотная бумага.
Время:2 часа
Задания к работе:
Задание 1
Построить сечение параллелепипеда ABCDA1B1C1D1 плоскостью, проходящей через точки M, N, P, лежащие, на прямых, соответственно, A1 B1, АD, DC
Образец и последовательность решения задачи:
1.Точки N и P лежат в плоскости сечения и в плоскости нижнего основания параллелепипеда. Построим прямую, проходящую через эти точки. Эта прямая является следом секущей плоскости на плоскость основания параллелепипеда.
2.Продолжим прямую, на которой лежит сторона AB параллелепипеда. Прямые AB и NP пересекутся в некоторой точке S. Эта точка принадлежит плоскости сечения.
3.Так как точка M также принадлежит плоскости сечения и пересекает прямую АА1 в некоторой точке Х.
4.Точки X и N лежат в одной плоскости грани АА1D1D, соединим их и получим прямую XN.
5.Так как плоскости граней параллелепипеда параллельны, то через точку M можно провести прямую в грани A1B1C1D1, параллельную прямой NP. Эта прямая пересечет сторону В1С1 в точке Y.
6.Аналогично проводим прямую YZ, параллельно прямой XN. Соединяем Z с P и получаем искомое сечение – MYZPNX.
Задание 2
Вариант1. Построить сечение параллелепипеда АВСDА1В1С1D1 плоскостью, заданной следующими точками M, N и P
1 Уровень: Все три точки лежит на рёбрах, выходящих из вершиныА
2 Уровень. M лежит в грани AA1D1D, N лежит в грани АА1В1В, P лежит в грани СС1D1D.
3 Уровень. M лежит на диагонали B1D, N лежит на диагонали АС1, P лежит на ребре С1D1.
Вариант2. Построить сечение параллелепипеда АВСDА1В1С1D1 плоскостью, проходящей через прямую DQ, где точка Q лежит на ребре СС1 и точку Р, заданную следующим образом
1 Уровень: Все три точки лежит на рёбрах, выходящих из вершиныС
2 Уровень: М лежит на продолжении ребра А1В1, причем точка А1 находится между точками В1 и Р.
3 Уровень: Р лежит на диагонали В1D
Порядок выполнения работы:
1.Изучите теоретический материал по темам:
Параллелепипед.
Прямой параллелепипед.
Наклонный параллелепипед.
Противолежащие грани параллелепипеда.
Свойства диагоналей параллелепипеда.
Понятие секущей плоскости и правила её построения.
Какие виды многоугольников получаются в сечении куба и параллелепипеда.
2. Постройте параллелепипед ABCDA1B1C1D1
3.Разберите решение задачи № 1
4.Последовательно постройте сечение параллелепипеда ABCDA1B1C1D1 плоскостью, проходящей через точки P, Q, R задачи № 1.
5.Постройте ещё три параллелепипеда и выделите на них сечения к задачам 1, 2, и 3 уровней
Критерии оценивания:
Литература: Атанасян Л.С. Геометрия: Учебник для 10-11 кл. общеобразоват. учреждений. Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кодомцев и др. - М.: Просвещение, 2010г Зив Б.Г. Задачи по геометрии: Пособие для учащихся 7-11 кл. общеобразоват. учреждений. / Б.Г. Зив, В.М. Мейлер, А.Г. Баханский. - М.: Просвещение, 2010. В. Н. ЛитвиненкоЗадачи на развитие пространственных представлений. Книга для учителя. - М.: Просвещение, 2010г
Дидактический материал к заданию практического занятия
К задаче № 1:
[pic]
Некоторые возможные сечения: [pic]
Построить сечения параллелепипеда плоскостью, проходящей через данные точки
[pic]
[pic]
[pic]
[pic]
Ответы к практической работе.
[pic] [pic] [pic]
[pic] [pic] [pic]
[pic] [pic] [pic]