Тестові завдання з алгебри 9 клас по темі : Послідовності.

Автор публикации:

Дата публикации:

Краткое описание: ...



Різнорівневі тестові самостійні роботи по темі : Послідовності. 9 клас

Додаток № 1

Алгебра 9 клас.

Самостійна робота № 1. Арифметична прогресія.

Варіант № 1.

1. Знайти а5, якщо а1 = 20 і d = 3.

а) 35 б)8 в) 32 г) ін. відпов.

2 Знайти десятий член арифметичної прогресії: ; -1; - ...

а) -5 б)-11 в)-11 г) ін. відпов.

3. Знайти а1, якщо азо =128, d=4.

а) -12 б)12 в)8 г) ін. відпов.

4. Знайти а1 і d, якщо а4=10; а13= 64.

а) а1 = - 8; d=6; б) а1 =28; d= - 6;

в)а1 = - 5; d = 5 г) ін. відпов.

5. Знайти Sзо, якщо а4=33; а15=88.

а) 2615 б) 2715 в) 2315 г)ін. відпов.

6. Скільки від’ємних членів містить арифметична прогресія: -4,1; -3,6; -3,1;…

а) 8; б) 9 в) 10 г) ін. відпов.

7. Знайти суму всіх натуральних чисел від 18 до 112 включно

8 .В арифметичній прогресії (хn): х4 + х2 – х3 = 4, х5 + х3 = 20 Знайти S9.

9. Сума трьох чисел, що становлять арифметичну прогресію дорівнює 15,
а сума квадратів цих чисел дорівнює 93. Знайти ці числа.

Додаток № 1

Алгебра 9 клас.

Самостійна робота № 1. Арифметична прогресія.

Варіант № 2.

1.Чи є арифметичною прогресією послідовність (аn), задана формулою аn=3n+1,
якщо є то знайти а
1 і d .

а) не є арифметична прогресія; б) є арифметична прогресія: а1=4, d=3;

в) є арифметична прогресія: а1=1, d=3.

2. Знайти десятий член арифметичної прогресії: 2,3; 1; -0,3…

а)9,7 б)10,7 в)-9,7 г)н.. відпов.

3. Знайти а1, якщо а15= -208, d= -7.

a) -100 б)110 в)-110; г) н.. відпов.

4. Знайти а1 і d, якщо а4=33, а15=88.

a) а1=18; d= -5; б) а1=18; d= 5

в) а1= -18; d= 5; г) н.. відпов.

5. Знайти S24, якщо а5= 16; а12= 58.

a) 1464; б)1424; в) 1264; г) н.. відпов.

6. а1 = 25, S25 = 3350. Знайти d.

a) 15; б) 10; в) ; г) н.. відпов.

7. Знайти суму всіх натуральних чисел від 12 до 84 включно

8. В арифметичній прогресії (Уn):

У632=33, У51 =28. Знайти S10

9. Сума трьох чисел, що становлять арифметичну прогресію, дорівнює 12,
а сума квадратів цих же чисел дорівнює 66. Знайти ці числа.

Додаток № 1

Алгебра 9 клас.

Самостійна робота № 1. Арифметична прогресія.

Варіант № 3.

1. Чи є арифметичною прогресією послідовність (аn), задана формулою аn=n2-5,
якщо є то знайти а
1 і d .

а) не є арифметична прогресія; б) є арифметична прогресія: а1= -4, d=3;

в) є арифметична прогресія: а1= -5, d=1.

2. Знайти 23-й член арифметичної прогресії -8;-6,5; -5...

а)311 б)25 в)26,5 г) ін. відпов.

3. Знайти d, якщо а1=10; а5=22.

а)3 б)-3 в)2,4 г)ін. відпов.

4. Знайти а1 і d, якщо а5 =27; а27=60

а) а1=21; d=1,5 б)а1=66, d=-1,5
в)а
1=25; d= г) ін. відпов.

5. Знайти S15, якщо d=7, а15=7б.

а)735 б)305 в)405 г) ін. відпов.

6. Скільки додатних членів містить арифметична прогресія: 4,6; 4,2; 3,8 …

а) 16; б) 12; в) 13; г) ін. відпов.

7. Знайти суму всіх натуральних чисел, які кратні 6 і не більші 288.

8. Знайти х з рівняння: 1+5+9+... +х=435.

9. Знайти різницю арифметичної прогресії (аn) і її перший член, якщо а8=16; S10=60.

Додаток № 1

Алгебра 9 клас.

Самостійна робота № 1. Арифметична прогресія.

Варіант № 4.

1. Знайти а26 якщо а1= 18 і d= -0,6

а)-3 б)33 в)3 г)ін. відпов.

2. Знайти 23-й член арифметичної прогресії 11; 7; 3; …

а)77 б)-77 в)99 г)ін. відпов.

3. Знайти d якщо а1= 28, а15= -21.

а) 3,5 б)-3,5 в) г)ін. відпов.

4. Знайти а1 і d, якщо а16= 7; а= 55

а) а1= -100; d= 6,2 б) а1 = -79; d= -4,8

в) а1= -65, d= 4,8 г) інша відповідь

5. Знайти S20, якщо d= 7, а20= 123.

а)1120 б)1130 в)720 г)інша відповідь

6. Між числами 2,5 і 4 вставте чотири таких числа, щоб вони разом з даними числами утворили арифметичну прогресію.

а) 2,8; 3,1; 3,4; 3,7; б) 2,6; 2,7; 2,8; 2,9;
в) 2,7; 2,9; 3,1; 3,3; г) ін. відпов.

7. Знайти у з рівняння: 1 +6+11+... +у= 342.

8 Знайти суму усіх натуральних чисел, які кратні 7 і не більші 287.

9. Чому дорівнює сума всіх додатних членів арифметичної прогресії:
5,2; 4,9; 4,6; …

Додаток № 2

Алгебра 9 клас


Самостійна робота № 2. Геометрична прогресія

Варіант № 1.


1 Нехай (bn) дана геометрична прогресія. Знайти b12, якщо b1 =1, b2=6

а)()11 б)611 в)511 г)ін.в


2 Знайти перший член геометричної прогресії (bn), якщо b6 = 3, q = 3.

а) 81; б) ; в) ; г) ін. відпов.


3 Знайти S14 даної геометричної прогресії: 1,2,4,8,...;

а) 16384 б) 8191 в) 16383 г) ін. в


4 Геометрична прогресія (bn) складається з чотирьох членів: 2; b2; b3; . Знайти b2 і b3.

а) 4; 8 б) 1; 0,5 в) 0,5; 0,125 г) ін. відпов.


5 Знайти четвертий член нескінченно спадної геометричної прогресії, сума якої дорівнює 81, а перший член 54.

а) 3 б) -3 в) 2 г) ін. відпов.


6 Знайти S8, якщо bn = 384, q = 2

а)765 б)-765 в) 728 г) ін. в



7 Перший член геометричної прогресії дорівнює 2, а третій 18. Скільки перших членів треба взяти, щоб їх сума дорівнювала 242.



8 Четвертий член геометричної прогресії становить 25% від шостого члена цієї прогресії, а сума другого та п'ятого членів прогресії дорівнює 216. Знайти суму перших чотирьох членів прогресії.



9. Сума перших трьох членів геометричної прогресії дорівнює 21, а сума їх квадратів дорівнює 189. Знайти ці числа.

Додаток № 2

Алгебра 9 клас


Самостійна робота № 2. Геометрична прогресія

Варіант № 2.


1 Нехай (bn) дана геометрична прогресія. Знайти bІ2, якщо b1 = 25, b2 = - 50

а) 5120 б)51200 в)-51200 г) ін. в


2 Знайти S9 даної геометричної прогресії: 1, -2, 4, -8

а) -513 б) 511 в) 171 г) ін. в


3 Знайти S6, якщо b6 = 486, q = 3

а) 728 б)-728 в) 608 г) ін. в


4 Перший член геометричної прогресії дорівнює 3, а п'ятий 48. Скільки перших членів треба взяти, щоб їх сума дорівнювала 381.

а) 5 б) 6 в) 7 г) ін. в


5. Знайти четвертий член нескінченної спадної геометричної прогресії, сума якої дорівнює 48, а перший член 24.

а) 2 б)-2 в) 3 г) ін. в


6. Знайти знаменник q і кількість членів прогресії, якщо b1 = 2, bn = 486, Sn = 7 28

а) 3; 6 б) 7; 3 в) 2 ; 5 г) ін. в



7. Між числами 2 і 162 вставте такі три числа, щоб вони разом з даними числами утворили геометричну прогресію.



8. Сума перших трьох членів геометричної прогресії дорівнює 26, а сума їх квадратів дорівнює 364. Знайти четвертий член цієї прогресії



9. Запишіть таку нескінченно спадну геометричну прогресію, сума членів якої дорівнює 3,5, а перший її член дорівнює 3.

Додаток № 2

Алгебра 9 клас


Самостійна робота № 2. Геометрична прогресія

Варіант № 3.


1 Нехай (bn) дана геометрична прогресія. Знайти b12, якщо b1 = 2, b2 = 4.

а) 4096 б)2048 в) 212 г) ін. в


2 Знайти S6 даної геометричної прогресії: 1024,512,256,...;

а)-2016 б)2016 в) 2018 г) ін. в


3 Знайти b1 і q якщо b4 = 54, b7 = 1458

а) 3 і 2 б) 2 і 3 в) 2 і -3 г) ін. в


4 Сума нескінченної спадної геометричної прогресії дорівнює 24, а сума першого та другого її членів 18. Знайти знаменник прогресії.

а) або - б) або - в) або - г) ін. в


5. При якому значенні х числа х – 7; х + 5 і 3х + 1 є послідовними членами геометричної прогресії.

а) -16,1; б) 16,1; в) -1 і 16; г) ін. відпов.


6 Знайти b1 і b5, якщо q = 3, S6 = 1820

а) 5 і 405 б)3 і 96 в) 4 і 302 г) ін. в



7 Знайти геометричну прогресію, утворену із шести членів, якщо сума перших трьох її членів дорівнює 26, а сума трьох останніх 702.



8 Знайти чотири числа, які утворюють геометричну прогресію, в якій третій член більший від першого на 9, а другий більший від четвертого на 18.



9. Знайти знаменник q і кількість членів прогресії, якщо b1 = 3, bn = 384,
S
n = 765.Додаток № 2

Алгебра 9 клас


Самостійна робота № 2. Геометрична прогресія

Варіант № 4.


1. Нехай (bn) дана геометрична прогресія. Знайти b7, якщо b1 = 10, b2 = 5

а) 640 б) в) г) ін. в


2 Знайти S7 даної геометричної прогресії: 1024,-512,256,...;

а)672 б)688 в)-686 г) ін. в


3 Знайти b1 і q, якщо b6 = 96, b9 = 768

а) 3 і 2 б) 2 і З в)-3 і 2 г) ін. в


4 Сума нескінченної спадної геометричної прогресії дорівнює 27, а сума першого та другого її членів 24. Знайти перший член прогресії.

а) 16 або 32 б) 18 або 36 в) 4 або 8 г) ін. в


5 Дано геометричну прогресію: 8; b2; b3; 27. Знайти b2 і b3.

a) 12 і 18 б) 10 і 18; в) 12 і 16; г) ін. відпов.


6 Знайти b1 і b6, якщо q = 2, S8 = 765

а) 5 і 405 б) 2 і 72 в) 3 і 96 г) ін. в



7 Знайти геометричну прогресію, утворену із шести членів, якщо сума перших трьох її членів дорівнює 168, а сума трьох останніх 21.



8. При якому значенні х числа 2х – 3; х – 4 і х + 2 будуть послідовними членами геометричної прогресії ?. Знайти ці числа.



9. Знайти знаменник нескінченно спадної геометричної прогресії, якщо сума її перших 6-ти членів становить суми всіх її членів.

Додаток № 3

Алгебра 9 клас

Підсумкова залікова робота за темою:

Послідовності і прогресії.

Варіант № 1

1 Тіло за одну секунду руху пройшло 7 м, а за кожну наступну секунду на 3 м більше, ніж за попередню. Яку відстань тіло пройшло за восьму секунду ?.

а) 25 м; б) 31 м; в) 28 м; г) ін. відпов.

2 Між числами 9 і 243 впишіть два числа так, щоб вони разом з даними числами утворили геометричну прогресію.

а) 18 і 54 б) 27 і 81 в) 36 і 144 г) ін. відпов.

3. В арифметичній прогресії (Хп): х423=4, х53=20. Знайти суму дев'яти перших членів.

а) 169 б)144 в) 225 г) ін. відпов.

4. Знайти суму нескінченної спадної геометричної прогресії, в якій четвертий член дорівнює , а знаменник .

а) 3 б) в) 12 г)ін. відпов.

5. Знайти суму 2 + 4 + 6 + …+ 2n, доданками якої є всі парні натуральні числа від 2 до 2n.

а) n2 + n; б) 2n(1+n); в) ін. відпов.

6 Послідовність задана формулою bn = 3n + 2. Знайти b20 + b30.

А) 152; б) 154; в) 150; г) ін. відпов.

7. Сума трьох чисел, що становлять арифметичну прогресію дорівнює 30. Якщо від першого числа відняти 5, від другого 4, а третє число залишити без змін, то отримані числа становитимуть геометричну прогресію. Знайти ці числа.

8. Розв'язати рівняння:

1 + 2х + 4х2 + ... + (2х)n + ... = 3,4 - 1,2х якщо відомо, що │х│< 0,5


Додаток № 3

Алгебра 9 клас


Підсумкова залікова робота за темою:

Послідовності і прогресії.

Варіант № 2


1 Поїзд, відійшовши від станції, рівномірно збільшував швидкість на 50 м за хвилину. Якою стала швидкість поїзда в кінці 20-ї хвилини.

а) 950 м/хв.; б) 60 км/год; в) 57 км/год г) ін. відпов.


2 Знайти суму нескінченної спадної геометричної прогресії, в якій четвертий член дорівнює , а знаменник .

а) 36 б)54 в) 81 г)ін. відпов.


3. Знайти перший і п'ятий члени арифметичної прогресії, якщо її різниця дорівнює 7, а сума шести її перших членів дорівнює 159.

а) 9 і 37 б)9і36 в) 6 і 21 г) ін. відпов.


4 Знайти кількість членів скінченої геометричної прогресії, в якій перший, другий і останній члени відповідно дорівнюють 3, 12 і 3072.

а) 4; б) 5; в) 6; г) ін. відпов.


5 Послідовність (Хn) – геометрична прогресія. Спростити вираз , якщо 0 < х < 1.

а) 1+х; б) 1-х; в) х2; г) ін. відпов.


6 Знайти суму всіх двоцифрових натуральних чисел.

а) 44145; б) 4905; в) 9701; г) ін. відпов.


7. Три числа, сума яких дорівнює 21, становлять арифметичну прогресію. Якщо до них відповідно додати 2, 3 і 9, то утворені числа становитимуть геометричну прогресію. Знайти ці числа.


8 Третій член геометричної прогресії становить 12,5% від шостого члена цієї прогресії, а сума третього та п'ятого членів прогресії дорівнює 80. Знайти суму перших шести членів прогресії.



Додаток № 3

Алгебра 9 клас

Підсумкова залікова робота за темою:

Послідовності і прогресії.

Варіант № 3


1 . Терміновий вклад, внесений в банк, щороку збільшується на 3%. Чому дорівнює вклад через три роки, якщо спочатку він становив 800 грн. ?

а) 849 грн.; б) 874 грн. ; в) 875 грн. ; г) ін. відпов.


2 Знайти перший і шостий члени арифметичної прогресії, якщо її різниця дорівнює 9, а сума восьми її перших членів дорівнює 180.

а) 9 і 37 б)-9 і 36 в) 8 і 29 г) ін. відпов


3 Між числами 160 і 5 впишіть чотири числа так, щоб вони разом з даними числами утворили геометричну прогресію.

а) -80, -40, -20, -10 б) 80, 40, 20,10 в) -80, 40, -20,10 г) ін. відпов


4 Знайти суму 1 + 3 + 5 + …+ (2n - 1), доданками якої є всі непарні натуральні числа від 1 до 2n – 1.

а) n2 + n; б) n2; в) n2 + 1; г) ін. відпов.


5 Послідовність (bn) задана формулою bn = 3n + 2. Знайти b10 – b6.

а) 52; б) 10; в) 12; г) ін. відпов.


6 Знайти перший від’ємний член арифметичної прогресії: 16,4; 15,6; 14,8; …

а) -0,4; б) -0,2; в) -0,1; г) ін. відпов.


7. Сума трьох чисел, що становлять геометричну прогресію дорівнює 65. Якщо від найменшого числа відняти 1, а від найбільшого 19, то отримані числа становитимуть арифметичну прогресію, Знайти ці числа.


8. Дано квадрат, діагональ якого дорівнює 5 см. Сторона цього квадрата є діагоналлю другого квадрата, сторона другого квадрата є діагоналлю нового квадрата і т.д. до нескінченності. Визначити суму площ усіх цих квадратів.


Додаток № 3

Алгебра 9 клас

Підсумкова залікова робота за темою:

Послідовності і прогресії.

Варіант № 4


1 Знайти суму послідовності 2 + 6 + 10 + 14 + …+ 198.

a) 10000; б) 5000; в) 4900; г) ін. відпов.


2 Перший член геометричної прогресії (Уn) дорівнює 3, а п’ятий 48. Скільки перших членів треба взяти, щоб їх сума дорівнювала 381.

а)5 6)7 в) 8 г)ін. відпов.


3 Знайти суму всіх натуральних чисел від 12 до 84 включно.

а) 3504 6)6175 в) 3304 г)ін. відпов.


4 Послідовність (bn) – нескінченна геометрична прогресія, в якої q = . Знайти b1, якщо S = 4,5.

а) 13,5; б) 1,5; в) 2,5; г) ін. відпов.


5 Знайти перший додатній член арифметичної прогресії: -15,9; -15,3; -14,7; …

а) -0,3; б) 0,2; в) 0,3; г) ін. відпов.


6 У коло, радіус якого дорівнює 5 см, вписано правильний трикутник; у цей трикутник вписано коло, а в це коло вписано правильний трикутник і т.д. Знайти суму довжин усіх кіл.

а) 15π см; б) 20π см; в) 25π см; г) ін. відпов.


7 Сума трьох чисел, що утворюють геометричну прогресію, дорівнює 26. Якщо до них відповідно додати 1, 6 і 3, то нові числа становитимуть арифметичну прогресію. Знайти ці числа.


8. Третій член арифметичної прогресії становить 50% від шостого члена цієї прогресії, а їх добуток дорівнює 288. Знайти другий член цієї прогресії.





Відповіді


С. р. № 1

І в.

ІІ в.

ІІІ в.

IV в.

1

в

б

а

в

2

в

г

б

б

3

б

в

а

б

4

а

б

а

в

5

б

а

в

б

6

б

в

б

а

7

6175

3504

57

56

8

144

225

7056

6027

9

2;5;8 або 8;5;2

1;4;7 або 7;4;1

-12;4

47,7






С. р. № 2

І в.

ІІ в.

ІІІ в.

IV в.

1

б

в

а

б

2

б

в

б

б

3

в

а

б

а

4

б

в

в

б

5

в

в

в

а

6

а

а

а

в

7

5

6;18;54

2;6;18;54; 162;486

96; 48; 24; 12; 6; 3

8

180

2; 6; 18

3;-6;12;-24

-11,2

9

3;6;12 або 12;6;3

3;3/7;3/50

q = 2; n = 8

 






К. р.

І в.

ІІ в.

ІІІ в.

IV в.

1

в

б

б

б

2

б

б

б

б

3

б

а

б

а

4

в

в

б

б

5

а

а

в

в

6

б

б

а

б

7

8;10;12 або 17;10;3

18;7;-4 або 3;7;11

5;15;45 або 45;15;5

2;16;18 або 18;16;2

8

1/3

252

25

8; -8