Рабочая программа по алгебре 7-9 класс. Составители: Тишенкова Г. С. и Головченко И. В.

Автор публикации:

Дата публикации:

Краткое описание: ...


[pic] ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа учебного предмета «Алгебра» для 7-9 классов составлена на основе ФГОС ООО, Фундаментального ядра содержания основного общего образования и требований к результатам освоения основной образовательной программы основного общего образования, образовательном стандарте общего образования.

Изучение алгебры при получении основного общего образования направлено на достижение следующих целей:

  • овладение математическим аппаратом, необходимым для продолжения образования на уровне среднего общего образования , изучения смежных дисциплин, применения в повседневной жизни;

  • создание фундамента математического развития, формирования механизмов мышления , характерных для математической деятельности и необходимых для адаптации в современном информационном обществе;

  • формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для развития сфер человеческой деятельности.

Практическая значимость школьного курса алгебры обусловлена тем, что её объектом являются количественные отношения действительного мира. Математическая подготовка необходима для понимания принципов устройства и использования современной техники, восприятия научных и технических понятий и идей. Математика является языком науки и техники. С её помощью моделируются и изучаются явления и процессы, происходящие в природе.

Алгебра является одним из опорных предметов основной школы: она обеспечивает изучение других дисциплин. В первую очередь это относится к предметам естественно-научного цикла, в частности к физике. Развитие логического мышления учащихся при обучении алгебре способствует усвоению предметов гуманитарного цикла.

Развитие у учащихся правильных представлений о сущности и происхождении алгебраических абстракций, соотношении реального и идеального, характере отражения математической наукой явлений и процессов реального мира, месте алгебры в системе наук и роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения учащихся и качеств мышления, необходимых

для адаптации в современном информационном обществе.

Требуя от учащихся умственных и волевых усилий, концентрации внимания, активности развитого воображения, алгебра развивает нравственные черты личности (настойчивость, целеустремлённость, творческую активность, самостоятельность, ответственность, трудолюбие, дисциплину и критичность мышления) и умение аргументированно отстаивать свои взгляды и убеждения, а также способность принимать самостоятельные

решения.

Изучение алгебры, функций, вероятности и статистики существенно расширяет кругозор учащихся, знакомя их с индукцией и дедукцией, обобщением и конкретизацией, анализом и синтезом, классификацией и систематизацией, абстрагированием, аналогией. Активное использование задач на всех этапах учебного процесса развивает творческие способности школьников.

Изучение алгебры позволяет формировать умения и навыки умственного труда — планирование своей работы, поиск рациональных путей её выполнения, критическую оценку результатов. В процессе изучения алгебры школьники должны научиться излагать свои мысли ясно и исчерпывающе, лаконично и ёмко, приобрести навыки чёткого, аккуратного и грамотного выполнения математических записей.

Важнейшей задачей школьного курса алгебры является развитие логического мышления учащихся. Сами объекты математических умозаключений и принятые в алгебре правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить чёткие определения, развивают логическую интуицию, кратко и наглядно раскрывают механизм логических построений и учат их применению.

Тем самым алгебра занимает одно из ведущих мест в формировании научно-теоретического мышления школьников. Раскрывая внутреннюю гармонию математики, формируя понимание красоты и изящества математических рассуждений, алгебра вносит значительный вклад в эстетическое воспитание учащихся.

ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОГО ПРЕДМЕТА

В курсе алгебры можно выделить следующие основные содержательные линии: арифметика; алгебра; функции; вероятность и статистика. Наряду с этим в содержание включены два дополнительных методологических раздела: логика и множества;

математика в историческом развитии, что связано с реализацией целей обще интеллектуального и общекультурного развития учащихся. Содержание каждого из этих разделов разворачивается в содержательно-методическую линию, пронизывающую

все основные содержательные линии. При этом первая линия — «Логика и множества» — служит цели овладения учащимися некоторыми элементами универсального математического языка, вторая — «Математика в историческом развитии» — способствует созданию общекультурного, гуманитарного фона изучения курса.

Содержание линии «Арифметика» служит базой для дальнейшего изучения учащимися математики, способствует развитию их логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе в основной школе связано с рациональными и иррациональными числами, формированием первичных представлений о действительном числе.

Содержание линии «Алгебра» способствует формированию у учащихся математического аппарата для решения задач из разделов математики, смежных предметов и окружающей реальности. Язык алгебры подчёркивает значение математики как языка для построения математических моделей процессов и явлений реального мира.

Развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики, и овладение навыками дедуктивных рассуждений также являются задачами изучения алгебры. Преобразование символьных форм вносит специфический вклад в развитие воображения учащихся, их способностей к математическому творчеству. В основной школе материал группируется вокруг рациональных выражений.

Содержание раздела «Функции» нацелено на получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования разнообразных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графический), вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.

Раздел «Вероятность и статистика» — обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования у учащихся функциональной грамотности — умения воспринимать и критически анализировать информацию, представленную в различных формах, понимать

вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числе

в простейших прикладных задачах.

При изучении статистики и вероятности обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.

МЕСТО УЧЕБНОГО ПРЕДМЕТА В УЧЕБНОМ ПЛАНЕ

Учебный план на изучение алгебры в 7—9 классах основной школы отводит 3 часа в неделю в течение каждого года обучения, по 105 учебных часов в год и 315 часов за весь период освоения учебного предмета.

ЛИЧНОСТНЫЕ, МЕТАПРЕДМЕТНЫЕ И ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА

Программа обеспечивает достижение следующих результатов :

личностные:

1) сформированность ответственного отношения к учению, готовность и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и по-

знанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учётом устойчивых познавательных интересов;

2) сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;

3) сформированность коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими, в образовательной, общественно полезной,

учебно-исследовательской, творческой и других видах деятельности;

4) ясность, точность, грамотность в изложении своих мыслей в устной и письменной речи, понимание смысла поставленной задачи, выстраивание аргументации, приведение примеров и

контрпримеров;

5) представление о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;

6) критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

7) креативность мышления, инициатива, находчивость, активность при решении алгебраических задач;

8) умение контролировать процесс и результат учебной математической деятельности;

9) способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.

метапредметные:

1) самостоятельность планирования альтернативных путей достижения целей, осознанный выбор наиболее эффективных способов решения учебных и познавательных задач;

2) умение осуществлять контроль по результату и по способу действия на уровне произвольного внимания и вносить необходимые коррективы;

3) адекватная оценка правильности или ошибочности выполнения учебной задачи, её объективной трудности и собственной возможности её решения;

4) осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований

и критериев, установления родовидовых связей;

5) устанавливание причинно-следственные связи; построение логического рассуждения, умозаключения (индуктивного, дедуктивного и по аналогии) и выводов;

6) умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;

7) организация учебного сотрудничества и совместной деятельности с учителем и сверстниками: определение цели, распределение функций и ролей участников, взаимодействие и общие способы работы; умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;

8) сформированность учебной и обще пользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);

9) первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;

10) видение математической задачи в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

11) нахождение в различных источниках информации, необходимой для решения математических проблем, и представление её в понятной форме; принятие решения в условиях неполной и избыточной, точной и вероятностной информации;

12) умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;

13) умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

14) умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

15) понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

16) умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

17) умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.

предметные:

1) умение работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), обосновывать суждения, проводить классификацию, доказывать математические утверждения;

2) владение базовым понятийным аппаратом: иметь представление о числе, владение символьным языком алгебры, знание элементарных функциональных зависимостей,

формирование представлений о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

3) умение выполнять алгебраические преобразования рациональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;

4) умение пользоваться математическими формулами и самостоятельно составлять формулы зависимостей между величинами на основе обобщения частных случаев и эксперимента;

5) умение решать линейные и квадратные уравнения и неравенства, а также приводимые к ним уравнения, неравенства, системы; применять графические представления для решения и исследования уравнений, неравенств, систем; применять полученные умения для решения задач из математики, смежных предметов, практики;

6) овладение системой функциональных понятий, функциональным языком и символикой, умение строить графики функций, описывать их свойства, использовать функционально-графические представления для описания и анализа математических задач и реальных зависимостей;

7) овладение основными способами представления и анализа статистических данных; умение решать задачи на нахождение частоты и вероятности случайных событий;

8) умение применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов.

СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА

7 класс

Математический язык. Математическая модель.

Числовые и алгебраические выражения. Что такое математический язык и математическая модель.

Линейное уравнение с одной переменной. Линейное уравнение с одной переменной как математическая модель реальной ситуации. Координатная прямая. Виды числовых промежутков на координатной прямой.

Линейная функция.

Координатная плоскость. Линейное уравнение с двумя переменными. Линейная функция. Возрастание и убывание линейной функции. Взаимное расположение графиков линейных функций.

Системы двух линейных уравнений с двумя переменными.

Основные понятия о системах двух линейных уравнений с двумя переменными. Методы решения систем двух линейных уравнений с двумя переменными: графический, подстановки и алгебраического сложения. Системы двух линейных уравнений как математические модели реальных ситуаций.

Степень с натуральным показателем.

Понятие степени с натуральным показателем. Свойства степеней. Степень с нулевым показателем.

Одночлены. Операции над одночленами.

Понятие одночлена. Стандартный вид одночлена. Сложение и вычитание одночленов. Умножение одночленов. Возведение одночлена в натуральную степень. Деление одночлена на одночлен.

Многочлены. Операции над многочленами.

Понятие многочлена. Сложение и вычитание многочленов. Умножение многочлена на одночлен. Умножение многочлена на многочлен. Формулы сокращенного умножения. Деление многочлена на одночлен.

Разложение многочленов на множители.

Понятие о разложении многочлена на множители. Вынесение общего множителя за скобки. Способ группировки. Разложение многочлена на множители с помощью

формул сокращенного умножения и комбинации различных приемов. Сокращение алгебраических дробей. Тождества.

Функция у = х2.

Функция у = х2 и ее график. Функция у = х2 и ее график. Графическое решение уравнений. Функциональная символика.

Элементы описательной статистики.

Данные и ряды данных. Упорядоченные ряды данных, таблицы распределения. Частота результата, таблица распределения частот, процентные частоты. Группировка данных.

Обобщающее повторение.

8 класс.

Алгебраические дроби.

Основные понятия. Основное свойство алгебраической дроби.

Сложение и вычитание алгебраических дробей с одинаковыми знаменателями.

Сложение и вычитание алгебраических дробей с разными знаменателями.

Умножение и деление алгебраических дробей. Возведение алгебраической дроби в степень. Преобразование рациональных выражений. Первые представления о решении рациональных уравнений. Степень с отрицательным целым показателем. Перебор вариантов, дерево вариантов

Функция y = √x. Свойства квадратного корня.

Рациональные числа. Понятие квадратного корня из неотрицательного числа.

Иррациональные числа. Множество действительных чисел. Функция y = √x , её свойства и график. Свойства квадратных корней. Преобразование выражений, содержащих операцию извлечения квадратного корня. Модуль действительного числа, график функции у = | х |,√ x2 =|x|

Простейшие комбинаторные задачи

Квадратичная функция. Функция y= k/х.

Функция y =кх2, её свойства и график. Функция у=к/х, её свойства и график.

Параллельный перенос графика функции (вправо, влево)

Параллельный перенос графика функции (вверх, вниз)

Параллельный перенос графика функции

Функция у =ах2 + bх + с, её свойства и график

Графическое решение квадратных уравнений

Организованный перебор вариантов. Простейшие вероятностные задачи.

Квадратные уравнения.

Основные понятия. Формулы корней квадратных уравнений.

Рациональные уравнения. Рациональные уравнения как математические модели реальных ситуаций (текстовые задачи). Ещё одна формула корней квадратного уравнения.

Теорема Виета. Разложение квадратного трёхчлена на линейные множители. Дерево вариантов. Простейшие вероятностные задачи. Иррациональные уравнения.

Неравенства.

Свойства числовых неравенств. Исследование функций на монотонность. Решение линейных неравенств. Решение квадратных неравенств. Приближённые значения действительных чисел, погрешность приближения, приближение по недостатку и избытку. Стандартный вид числа.

Простейшие комбинаторные и вероятностные задачи.

Обобщающее повторение.

9 класс

Рациональные неравенства и их системы.

Линейные и квадратные неравенства (повторение). Рациональные неравенства.

Множества и операции над ними. Системы рациональных неравенств.

Системы уравнений.

Основные понятия. Методы решения систем уравнений. Системы уравнений как математические модели реальных ситуаций (текстовые задачи).

Числовые функции.

Определение числовой функции. Область определения. Область значений функции.

Способы задания функции. Свойства функций. Чётные и нечётные функции.

Функции y =хn, n N, их свойства и графики. Функции y =х-n ,n N, их свойства и графики.

Функция y = 3√x , её свойства и график.


Прогрессии.

Числовые последовательности. Арифметическая прогрессия. Геометрическая прогрессия.


Элементы комбинаторики, статистики и теории вероятностей.

Комбинаторные задачи. Статистика — дизайн информации. Простейшие вероятностные задачи.

Экспериментальные данные и вероятности событий.

Обобщающее повторение.




























ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ С ОПРЕДЕЛЕНИЕМ ОСНОВНЫХ ВИДОВ УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ

Номер

пара-

графа

Содержание материала

Количество

часов

Характеристика основных видов учебной деятельности

(на уровне учебных действий)

7 класс

Глава 1. Математический язык.

Математическая модель

13

Выполнять элементарные знаково-символические действия, применять буквы для обозначения чисел, для записи утверждений; составлять буквенные выражения по условиям, заданным словесно, рисунком или чертежом; вычислять числовое значение буквенного выражения; находить область допустимых значений переменных в выражении. Распознавать линейные уравнения, решать линейные уравнения и уравнения, сводящиеся к ним. Решать текстовые задачи алгебраическим способом: переходить от словесной формулировки задачи к алгебраической модели путём составления уравнения, решать уравнение, интерпретировать результат


1

Числовые и алгебраические выражения

2

2

Что такое математический язык

2

3

Что такое математическая модель

2

4

Линейное уравнение с одной переменной

2

5

Координатная прямая

2

Данные и ряды данных

2


Контрольная работа № 1

1

Глава 2. Линейная функция

13

Строить на координатной плоскости точки и фигуры по заданным координатам; определять координаты точек. Определять, является ли пара чисел решением данного уравнения с двумя переменными; приводить примеры решений уравнений с двумя переменными; решать задачи, алгебраической моделью которых является уравнение с двумя переменными; находить целые решения путём перебора. Строить графики линейных уравнений с двумя переменными. Вычислять значения линейной функции, составлять таблицы значений функции. Строить график линейной функции, описывать её свойства на основе графических представлений. Показывать схематически положение на координатной плоскости графиков функций вида y = kx, у = kx + b в зависимости от значений коэффициентов k, b-

6

Координатная плоскость

2

7

Линейное уравнение с двумя переменными

3

8

Линейная функция

3

9

Линейная функция у = kx

2

10

Взаимное расположение графиков линейных функций

1

10а

Упорядоченные ряды данных. Таблицы распределения

1


Контрольная работа № 2

1

Глава 3. Системы двух линейных

уравнений с двумя переменными

12

Решать системы двух линейных уравнений с двумя переменными графически, методом подстановки, методом алгебраического сложения. Решать текстовые задачи алгебраическим способом: переходить от словесной формулировки задачи к алгебраической модели путём составления системы линейных уравнений, решать составленную систему уравнений, интерпретировать результат. [Исследовать системы уравнений с двумя переменными, содержащие буквенные коэффициенты]. Конструировать эквивалентные речевые высказывания с использованием алгебраического и геометрического языков. Использовать функционально-графические представления для решения и исследования систем уравнений

11

Основные понятия

2

12

Метод подстановки

2

13

Метод алгебраического сложения

2

14

Системы двух линейных уравнений с двумя переменными как математические модели реальных ситуаций

3

14а

Нечисловые ряды данных

2


Контрольная работа № 3

1

Глава 4. Степень с натуральным

показателем и её свойства

9

Формулировать определение степени с натуральным показателем, с нулевым показателем; формулировать, записывать в символической форме

и обосновывать свойства степени с целым неотрицательным показателем; применять свойства степени для преобразования выражений и вычислений.

Воспроизводить формулировки определений, конструировать несложные определения самостоятельно.

Воспроизводить формулировки и доказательства изученных теорем. Конструировать математические предложения с помощью связки

если ..., то ...

15

Что такое степень с натуральным показателем

2

16

Таблица основных степеней

1

17

Свойства степени с натуральным показателем

2

18

Умножение и деление степеней с одинаковым показателем

2

19

Степень с нулевым показателем

1

19а

Составление таблиц распределений без упорядочивания данных

1

Глава 5. Одночлены. Операции над

одно членами

8

Выполнять действия с одночленами

20

Понятие одночлена. Стандартный вид одночлена.

1

21

Сложение и вычитание одночленов

2

22

Умножение одночленов. Возведение одночлена в степень

2

23

Деление одночлена на одночлен

1

23а

Частота результата. Таблица распределения частот

1


Контрольная работа № 4

1

Глава 6. Многочлены. Операции над

многочленами

15

Выполнять действия с многочленами; доказывать формулы сокращённого умножения, применять их в преобразованиях выражений и вычислениях. При-

менять различные формы самоконтроля при выполнении преобразований

24

Основные понятия

1

25

Сложение и вычитание многочленов

2

26

Умножение многочлена на одночлен

2

27

Умножение многочлена на многочлен

3

28

Формулы сокращённого умножения

4

29

Деление многочлена на одночлен

1

29а

Процентные частоты. Таблицы распределения частот в процентах

1


Контрольная работа № 5

1

Глава 7. Разложение многочленов на

множители

16

Выполнять разложение многочленов на множители и сокращение алгебраических дробей

30

Что такое разложение многочлена на множители и зачем оно нужно

1

31

Вынесение общего множителя за скобки

2

32

Способ группировки

2

33

Разложение многочлена на множители с помощью формул сокращённого

умножения

3

34

Разложение многочлена на множители с помощью комбинаций различных приёмов

2

34а

Группировка данных

2


Контрольная работа № 6

1

35

Сокращение алгебраических дробей

2

36

Тождества

1

Глава 8. Функция y = x2

10

Вычислять значения функций у = х2, у = −х2, составлять таблицы значений функции; строить графики функций у = х2, у = −х2 и кусочных функций описывать их свойства на основе графических представлений. Использовать функциональную символику для записи фактов, связанных с функциями, обогащая опыт выполнения знаково-символических действий; строить речевые конструкции с использованием функциональной терминологии

37

Функция у = х2

3

38

Графическое решение уравнений

2

39

Что означает в математике запись y = f (x)

3

39а

Группировка данных

1


Контрольная работа № 7

1

Обобщающее повторение (включает в себя элементы описательной статистики по материалам Приложения, имеющегося в задачнике)

6

Извлекать информацию из таблиц и диаграмм, выполнять вычисления по табличным данным, организовывать информацию в виде таблиц и диаграмм.

Приводить примеры числовых данных, находить среднее, размах, моду числовых наборов

8 класс

Глава 1. Алгебраические дроби

21

Формулировать основное свойство алгебраической дроби и применять его для преобразования дробей. Выполнять действия с алгебраическими дробями, представлять дробное выражение в виде отношения многочленов, доказывать тождества.

1

Основные понятия

1

2

Основное свойство алгебраической дроби

2

3

Сложение и вычитание алгебраических дробей с одинаковыми знаменателями

2

4

Сложение и вычитание алгебраических дробей с разными знаменателями

3

Формулировать определение степени с целым показателем.

Вычислять значения степеней с целым показателем. Формулировать, записывать в символической форме и иллюстрировать примерами свойства степени с целым показателем, применять свойства степени для преобразования выражений и вычислений. [Выполнять преобразования рациональных выражений в соответствии с поставленной целью: выделять квадрат двучлена, целую часть дроби и пр. Применять преобразования рациональных выражений для решения задач.] Проводить доказательные рассуждения о корнях уравнения с опорой на определение корня


Контрольная работа № 1

1

5

Умножение и деление алгебраических дробей. Возведение алгебраической дроби в степень

2

6

Преобразование рациональных выражений

3

7

Первые представления о решении рациональных уравнений

2

8

Степень с отрицательным целым показателем

2

Перебор вариантов, дерево вариантов

2


Контрольная работа № 2

1

Глава 2. Функция y = √x.

Свойства квадратного корня

19

Описывать множество целых чисел, множество рациональных чисел, соотношение между этими множествами. Сравнивать и упорядочивать рациональные числа, выполнять вычисления с рациональными

числами. Формулировать определение квадратного корня из неотрицательного числа. Использовать график функции у2 для нахождения квадратных корней. Вычислять точные и приближённые значения квадратных корней, используя при необходимости калькулятор; проводить оценку квадратных корней. Исследовать уравнение х2= a; находить точные и приближённые корни при а > 0. Исследовать свойства квадратного корня, проводя числовые эксперименты с помощью калькулятора, компьютера. Доказывать свойства квадратных корней, применять их к преобразованию выражений. Вычислять значения выражений, содержащих квадратные корни; выражать переменные из геометрических и физических формул.

Приводить примеры иррациональных чисел; распознавать рациональные и иррациональные числа; изображать действительные числа точками координатной прямой. Находить десятичные приближения рациональных и иррациональных чисел; сравнивать и упорядочивать действительные числа. Описывать множество действительных чисел. Использовать в письменной математической речи обозначения и графические изображения числовых

множеств, теоретико-множественную символику. Вычислять значения функций y =√x , y = | х |, составлять таблицы значений функции; строить графики функций y =√x , y = | х | и кусочных функций, описывать их свойства на основе графических представлений. Использовать функциональную символику для записи фактов, связанных с функциями, обогащая опыт выполнения знаково-символических действий; строить речевые конструкции с использованием функциональной терминологии

9

Рациональные числа

2

10

Понятие квадратного корня из неотрицательного числа

2

11

Иррациональные числа

1

12

Множество действительных чисел

1

13

Функция y = √x , её свойства и график

2

14

Свойства квадратных корней

2

15

Преобразование выражений, содержащих операцию извлечения квадратного корня

3


Контрольная работа № 3

1

16

Модуль действительного числа, график функции у = | х |,√ x2 =|x|

3

16а

Простейшие комбинаторные задачи

2

Глава 3. Квадратичная функция.

Функция y= k/х

17

Вычислять значения функций, заданных формулами (при необходимости использовать калькулятор); составлять таблицы значений функции. Вычислять значения функций у = kx2, у=к/х, у = ах2 + + с, составлять таблицы значений функции; строить графики функций у = kx2, y=к/х,

у = ах2 + + с и кусочных функций, описывать их свойства на основе графических представлений. Использовать функциональную символику для записи разнообразных фактов, связанных с рассматриваемыми функциями, обогащая опыт выполнения зна ково-символических действий; строить речевые конструкции с использованием функциональной терминологии. Использовать компьютерные программы для исследования положения на

координатной плоскости графиков функций в зависимости от значений коэффициентов, входящих в формулу. Распознавать виды изучаемых функций. Показывать схематически положение на координатной плоскости графиков функций вида у = kx2, у=к/х, у = ах2+ + с в зависимости от значений коэффициентов, входящих в формулу. Использовать функционально-графические представления для решения и исследования уравнений.

[Строить графики функций на основе преобразований известных графиков.]






17

Функция y =кх2, её свойства и график

2

18

Функция у=к/х, её свойства и график

2


Контрольная работа № 4

1

19

Параллельный перенос графика функции (вправо, влево)

2

20

Параллельный перенос графика функции (вверх, вниз)

1

21

Параллельный перенос графика функции

2

22

Функция у =ах2 + + с, её свойства и график

3

23

Графическое решение квадратных уравнений

1

23а

Организованный перебор вариантов. Простейшие вероятностные задачи

2


Контрольная работа № 5

1


Глава 4. Квадратные уравнения


20

Проводить доказательные рассуждения о корнях уравнения с опорой на определение корня, функциональные свойства выражений.

Распознавать линейные и квадратные уравнения, целые и дробные уравнения.

Решать квадратные уравнения и уравнения, сводящиеся к ним; решать дробно-рациональные и простейшие иррациональные уравнения.

Определять наличие корней квадратного уравнения

по дискриминанту и коэффициентам. [Исследовать

квадратные уравнения с буквенными коэффициентами.]

Распознавать квадратный трёхчлен, выяснять возможность разложения его на множители, представлять квадратный трёхчлен в виде произведения линейных множителей.

Решать текстовые задачи алгебраическим способом: переходить от словесной формулировки задачи к алгебраической модели путём составления уравнения, решать составленное уравнение, интерпретировать результат. [Находить целые корни многочленов с целыми коэффициентами.]

24

Основные понятия

1

25

Формулы корней квадратных уравнений

3

26

Рациональные уравнения

3

27

Рациональные уравнения как математические модели реальных ситуаций (текстовые задачи)

3

28

Ещё одна формула корней квадратного уравнения

2

29

Теорема Виета. Разложение квадратного трёхчлена на линейные множители

3

29а

Дерево вариантов. Простейшие вероятностные задачи

2


Контрольная работа № 6

1

30

Иррациональные уравнения

2

Глава 5. Неравенства

16

Формулировать свойства числовых неравенств, иллюстрировать их на координатной прямой, доказывать алгебраически; применять свойства неравенств в ходе решения задач. [Доказывать неравенства.]

Распознавать линейные и квадратные неравенства.

Решать линейные неравенства; решать квадратные неравенства, используя графические представления. Использовать запись чисел в стандартном

виде для выражения размеров объектов, длительности процессов в окружающем мире. Сравнивать числа и величины, записанные с использованием степени 10. Использовать разные формы записи

приближённых значений, делать выводы о точности приближения по их записи. Выполнять вычисления с реальными данными. Выполнять прикидку и оценку результатов вычислений

31

Свойства числовых неравенств

2

32

Исследование функций на монотонность

2

33

Решение линейных неравенств

2

34

Решение квадратных неравенств

3


Контрольная работа № 7

1

35

Приближённые значения действительных чисел, погрешность приближения, приближение по недостатку и избытку

2

36

Стандартный вид числа

1

36а

Простейшие комбинаторные и вероятностные задачи







3

Обобщающее повторение (включает в себя элементы комбинаторики по материалам Приложения, имеющегося в задачнике)

9

Выполнять перебор всех возможных вариантов для пересчёта объектов или комбинаций. Применять правило комбинаторного умножения для решения задач на нахождение числа объектов

или комбинаций

9 класс

Глава 1. Рациональные неравенства и их системы

14

Приводить примеры конечных и бесконечных множеств. Находить объединение и пересечение конкретных множеств, разность множеств. Приводить примеры несложных классификаций. Иллюстрировать теоретико-множественные понятия с помощью кругов Эйлера.

Использовать теоретико-множественную символику и язык при решении задач в ходе изучения различных разделов курса.

Использовать в письменной математической речи обозначения и графические изображения числовых множеств, теоретико-множественную символику.

Распознавать линейные и квадратные неравенства.

Решать линейные, квадратные и дробно-рациональные неравенства и их системы

1

Линейные и квадратные неравенства (повторение)

2

2

Рациональные неравенства

4

3

Множества и операции над ними

3

4

Системы рациональных неравенств

4


Контрольная работа № 1

1

Глава 2. Системы уравнений

18

Определять, является ли пара чисел решением данного уравнения с двумя переменными; приводить примеры решений уравнений с двумя переменными.

Строить графики уравнений с двумя переменными. [Решать линейные уравнения и несложные уравнения второй степени с двумя переменными в целых числах.] [Изображать на координатной плоскости множества

точек, задаваемых неравенствами с двумя переменными и их системами. Описывать алгебраически области координатной плоскости.]

Решать системы двух уравнений с двумя переменными методом подстановки, методом алгебраического сложения, методом введения новых переменных. Использовать функционально-графические представления для решения и исследования систем уравнений.

Решать текстовые задачи алгебраическим способом: переходить от словесной формулировки задачи к алгебраической модели путём составления системы уравнений, решать составленную систему

уравнений, интерпретировать результат

5

Основные понятия

5

6

Методы решения систем уравнений

6


Контрольная работа № 2

1

7

Системы уравнений как математические модели реальных ситуаций (текстовые задачи)

6

Глава 3. Числовые функции

24

Вычислять значения функций, заданных формулами (при необходимости использовать калькулятор); составлять таблицы значений функции.

Вычислять значения степенных функций с целым

показателем.

Формулировать определение корня третьей степе-

ни, находить значения кубических корней, используя при необходимости калькулятор. Вычислять значения функции y = x 3 . Составлять таблицы значений функций; строить графики степенных функций с целым показателем, функции y = x 3 и кусочных функций, описывать их свойства.

Использовать функциональную символику для записи разнообразных фактов, связанных с рассматриваемыми функциями, обогащая опыт выполнения знаково-символических действий; строить речевые конструкции с использованием функциональной терминологии.

Использовать компьютерные программы для исследования положения на координатной плоскости графиков функций в зависимости от значений коэффициентов, входящих в формулу. Распознавать виды изучаемых функций.

Использовать функционально-графические представления для решения и исследования уравнений.

Строить графики функций на основе преобразований известных графиков

8

Определение числовой функции. Область определения. Область значений функции

4


Контрольная работа № 3

1

9

Способы задания функции

2

10

Свойства функций

5

11

Чётные и нечётные функции

2


Контрольная работа № 4

1

12

Функции y n, n N, их свойства и графики

2

13

Функции y -n ,n N, их свойства и графики

3

14

Функция y = 3x , её свойства и график

3


Контрольная работа № 5

1

Глава 4. Прогрессии

14

Применять индексные обозначения, строить речевые высказывания с использованием терминологии, связанной с понятием числовой последовательности.

Вычислять члены последовательностей, заданных

формулой n-го члена или рекуррентно. Устанавливать закономерность в построении последовательности, если выписаны первые несколько её членов.

Изображать члены последовательности точками на

координатной плоскости.

Распознавать арифметическую и геометрическую

прогрессии при разных способах задания. Выводить на основе доказательных рассуждений формулы общего члена арифметической и геометрической прогрессий, суммы первых n членов арифметической и геометрической прогрессий, решать задачи с использованием этих формул.

Рассматривать примеры из реальной жизни, иллюстрирующие изменение в арифметической прогрессии, в геометрической прогрессии; изображать соответствующие зависимости графически.

Решать задачи на сложные проценты, в том числе задачи из реальной практики (с использованием калькулятора)

15

Числовые последовательности

3

16

Арифметическая прогрессия

5

17

Геометрическая прогрессия

5


Контрольная работа № 6

1

Глава 5. Элементы комбинаторики, статистики и теории вероятностей

20

Выполнять перебор всех возможных вариантов для пересчёта объектов или комбинаций.

Применять правило комбинаторного умножения для решения задач на нахождение числа объектов или комбинаций.

Распознавать задачи на определение числа перестановок и выполнять соответствующие вычисления.

Извлекать информацию из таблиц и диаграмм, выполнять вычисления по табличным данным.

Определять по диаграммам наибольшие и наименьшие данные, сравнивать величины.

Организовывать информацию в виде таблиц, столбчатых и круговых диаграмм.

Приводить примеры числовых данных, находить среднее, размах, моду, дисперсию числовых наборов.

Приводить содержательные примеры использования средних значений и дисперсии для описания данных. Решать задачи на вычисление вероятности с применением комбинаторики.

Проводить случайные эксперименты, в том числе с помощью компьютерного моделирования, интерпретировать их результаты. Вычислять частоту случайного события, оценивать вероятность с помощью частоты, полученной опытным путём.

Приводить примеры достоверных и невозможных событий. Объяснять значимость маловероятных событий в зависимости от их последствий.

Решать задачи на нахождение вероятностей событий.

Приводить примеры противоположных событий.

Использовать при решении задач свойство вероятностей противоположных событий

18

Комбинаторные задачи

5

19

Статистика — дизайн информации

5

20

Простейшие вероятностные задачи

5

21

Экспериментальные данные и вероятности событий

4


Контрольная работа № 7

1

Обобщающее повторение

12







ОПИСАНИЕ УЧЕБНО-МЕТОДИЧЕСКОГО И МАТЕРИАЛЬНО-ТЕХНИЧЕСКОГО ОБЕСПЕЧЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ДЕЯТЕЛЬНОСТИ

1. Мордкович А. Г. Алгебра, 7 кл. Ч. 1: учебник / А. Г. Мордкович. — М.: Мнемозина, 2013.

2. Мордкович А. Г. и др. Алгебра, 7 кл. Ч. 2: задачник / А. Г. Мордкович и др. — М.: Мнемозина, 2013.

3. Мордкович А. Г. Алгебра, 7 кл.: пособие для учителя / А. Г. Мордкович. — М.: Мнемозина, 2013.

4. Александрова Л. А. Алгебра, 7 кл.: контрольные работы /Л. А. Александрова. — М.: Мнемозина,2013.

5. Александрова Л. А. Алгебра, 7 кл.: самостоятельные работы /Л. А. Александрова. — М.: Мнемозина,2013.

6. Александрова Л. А. Алгебра, 7 кл.: проверочные работы в новой форме / Л. А. Александрова. — М.: Мнемозина, 2013.

7. Тульчинская Е. Е. Алгебра, 7 кл.: блицопрос / Е. Е. Тульчинская. — М.: Мнемозина, 2013.

8. Зубарева И. И. Алгебра, 7 кл.: рабочая тетрадь. В 2 ч. / И. И. Зубарева, М. С. Мильштейн. — М.: Мнемозина, 2013.

9. Мордкович А. Г. Алгебра, 8 кл. Ч. 1: учебник / А. Г. Мордкович. — М.: Мнемозина, 2013.

10. Мордкович А. Г. Алгебра, 8 кл. Ч. 2: задачник / А. Г. Мордкович и др. — М.: Мнемозина, 2013.

11. Мордкович А. Г. Алгебра, 8 кл.: пособие для учителя /А. Г. Мордкович. — М.: Мнемозина, 2013.

12. Александрова Л. А. Алгебра, 8 кл.: контрольные работы /Л. А. Александрова. — М.: Мнемозина,2013.

13. Александрова Л. А. Алгебра, 8 кл.: самостоятельные работы /Л. А. Александрова. — М.: Мнемозина, 2013.

14. Александрова Л. А. Алгебра, 8 кл.: проверочные работы в новой форме / Л. А. Александрова. — М.: Мнемозина, 2013.

15. Тульчинская Е. Е. Алгебра, 8 кл.: блицопрос / Е. Е. Тульчинская. — М.: Мнемозина, 2013.

16. Мордкович А. Г. Алгебра, 9 кл. Ч. 1: учебник / А. Г. Мордкович,П. В. Семёнов. — М.: Мнемозина,2013.

17. Мордкович А. Г. Алгебра, 9 кл. Ч. 2: задачник / А. Г. Мордкович и др. — М.: Мнемозина, 2013.

18. Мордкович А. Г. Алгебра, 9 кл.: пособие для учителя /А. Г. Мордкович, П. В. Семёнов. — М.: Мнемозина, 2013.

19. Александрова Л. А. Алгебра, 9 кл.: контрольные работы /Л. А. Александрова. — М.: Мнемозина,2013.

20. Александрова Л. А. Алгебра, 9 кл.: самостоятельные работы /Л. А. Александрова. — М.: Мнемозина, 2013.

21. Александрова Л. А. Алгебра, 9 кл.: проверочные работы в новой форме / Л. А. Александрова. — М.: Мнемозина, 2013.

22. Тульчинская Е. Е. Алгебра, 9 кл.: блицопрос / Е. Е. Тульчинская. — М.: Мнемозина, 2013.

31. Шеломовский В. В. Алгебра, 7 кл.: электронный помощник / В. В. Шеломовский. — М.: Мнемозина, 2009.

32. Шеломовский В. В. Алгебра, 8 кл.: электронный помощник /В. В. Шеломовский. — М.: Мнемозина,2009.

33. Шеломовский В. В. Алгебра, 9 кл.: электронный помощник / В. В. Шеломовский. — М.: Мнемозина, 2009.


34.Компьютер, мультимедийный проектор, принтер, сканер, интерактивная доска, медиаресурсы


ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ УЧЕБНОГО ПРЕДМЕТА

В 7-9 классах:

Выпускник научится (для использования в повседневной жизни и обеспечения возможности успешного продолжения образования на базовом уровне)

Элементы теории множеств и математической логики

  • Оперировать на базовом уровне понятиями: множество, элемент множества, подмножество, принадлежность;

  • задавать множества перечислением их элементов;

  • находить пересечение, объединение, подмножество в простейших ситуациях.

В повседневной жизни и при изучении других предметов:

  • использовать графическое представление множеств для описания реальных процессов и явлений, при решении задач других учебных предметов

Числа

  • Оперировать на базовом уровне понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, арифметический квадратный корень;

  • использовать свойства чисел и правила действий при выполнении вычислений;

  • использовать признаки делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении несложных задач;

  • выполнять округление рациональных чисел в соответствии с правилами;

  • оценивать значение квадратного корня из положительного целого числа;

  • распознавать рациональные и иррациональные числа;

  • сравнивать числа.

В повседневной жизни и при изучении других предметов:

  • оценивать результаты вычислений при решении практических задач;

  • выполнять сравнение чисел в реальных ситуациях;

  • составлять числовые выражения при решении практических задач и задач из других учебных предметов

Тождественные преобразования

  • Выполнять несложные преобразования для вычисления значений числовых выражений, содержащих степени с натуральным показателем, степени с целым отрицательным показателем;

  • выполнять несложные преобразования целых выражений: раскрывать скобки, приводить подобные слагаемые;

  • использовать формулы сокращенного умножения (квадрат суммы, квадрат разности, разность квадратов) для упрощения вычислений значений выражений;

  • выполнять несложные преобразования дробно-линейных выражений.

В повседневной жизни и при изучении других предметов:

  • понимать смысл числа, записанного в стандартном виде;

  • оперировать на базовом уровне понятием «стандартная запись числа»

Уравнения и неравенства

  • Оперировать на базовом уровне понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения, числовое неравенство, неравенство, решение неравенства;

  • проверять справедливость числовых равенств и неравенств;

  • решать линейные неравенства и несложные неравенства, сводящиеся к линейным;

  • решать системы несложных линейных уравнений, неравенств;

  • проверять, является ли данное число решением уравнения (неравенства);

  • решать квадратные уравнения одним из способов;

  • изображать решения неравенств и их систем на числовой прямой.

В повседневной жизни и при изучении других предметов:

  • составлять и решать линейные уравнения при решении задач, возникающих в других учебных предметах

Функции

  • находить значение функции по заданному значению аргумента;

  • находить значение аргумента по заданному значению функции в несложных ситуациях;

  • определять положение точки по её координатам, координаты точки по её положению на плоскости;

  • по графику находить область определения, множество значений, нули функции, промежутки знакопостоянства, промежутки возрастания и убывания, наибольшее и наименьшее значение функции;

  • строить график линейной функции;

  • проверять, является ли данный график графиком заданной функции (линейной, квадратичной, обратной пропорциональности);

  • примерно определять координаты точки пересечения графиков функций;

  • оперировать на базовом уровне понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия;

  • решать задачи на прогрессии, в которых ответ может быть получен непосредственным подсчётом без применения формул.

В повседневной жизни и при изучении других предметов:

  • использовать графики реальных процессов и зависимостей для определения их свойств (наибольшие и наименьшие значения, промежутки возрастания и убывания, области положительных и отрицательных значений и т.п.);

  • использовать свойства линейной функции и ее график при решении задач из других учебных предметов

Статистика и теория вероятностей

  • Иметь представление о статистических характеристиках, вероятности случайного события, комбинаторных задачах;

  • решать простейшие комбинаторные задачи методом прямого и организованного перебора;

  • представлять данные в виде таблиц, диаграмм, графиков;

  • читать информацию, представленную в виде таблицы, диаграммы, графика;

  • определять основные статистические характеристики числовых наборов;

  • оценивать вероятность события в простейших случаях;

  • иметь представление о роли закона больших чисел в массовых явлениях.

В повседневной жизни и при изучении других предметов:

  • оценивать количество возможных вариантов методом перебора;

  • иметь представление о роли практически достоверных и маловероятных событий;

  • сравнивать основные статистические характеристики, полученные в процессе решения прикладной задачи, изучения реального явления;

  • оценивать вероятность реальных событий и явлений в несложных ситуациях

Текстовые задачи

  • Решать несложные сюжетные задачи разных типов на все арифметические действия;

  • строить схематический чертёж или другую краткую запись (таблица, схема, рисунок) как модель текста задачи, в которой даны значения тройки взаимосвязанных величин, с целью поиска решения задачи;

  • осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию, при поиске решения задач, или от требования к условию;

  • составлять план процесса решения задачи;

  • выделять этапы решения задачи;

  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

  • знать различие скоростей объекта в стоячей воде, против течения и по течению реки;

  • решать задачи на нахождение части числа и числа по его части;

  • решать задачи разных типов (на работу, на покупки, на движение), связывающих три величины, выделять эти величины и отношения между ними;

  • находить процент от числа, число по проценту от него, находить процентное снижение или процентное повышение величины;

  • решать несложные логические задачи методом рассуждений.

В повседневной жизни и при изучении других предметов:

  • выдвигать гипотезы о возможных предельных значениях числового ответа задачи (делать прикидку)

История математики

  • Описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;

  • знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей;

  • понимать роль математики в развитии России

Методы математики

  • Применять известные методы при решении стандартных математических задач;

  • замечать и характеризовать математические закономерности в окружающей действительности;

  • приводить примеры математических закономерностей в природе, в том числе характеризующих эстетику окружающего мира и произведений искусства

Выпускник получит возможность научиться для обеспечения возможности успешного продолжения образования на базовом и углублённом уровнях

Элементы теории множеств и математической логики

  • Оперировать понятиями: множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность, включение, равенство множеств;

  • изображать множества и отношение множеств с помощью кругов Эйлера;

  • определять принадлежность элемента множеству, объединению и пересечению множеств;

  • задавать множество с помощью перечисления элементов, словесного описания;

  • оперировать понятиями: высказывание, истинность и ложность высказывания, отрицание высказываний, операции над высказываниями: и, или, не, условные высказывания (импликации);

  • строить высказывания, отрицания высказываний.

В повседневной жизни и при изучении других предметов:

  • строить цепочки умозаключений на основе использования правил логики;

  • использовать множества, операции с множествами, их графическое представление для описания реальных процессов и явлений

Числа

  • Оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, иррациональное число, квадратный корень, действительное число, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;

  • понимать и объяснять смысл позиционной записи натурального числа;

  • выполнять вычисления, в том числе с использованием приёмов рациональных вычислений;

  • использовать признаки делимости на 2, 4, 8, 5, 3, 6, 9, 10, 11, суммы и произведения при выполнении вычислений и решении задач;

  • выполнять округление рациональных чисел с заданной точностью;

  • сравнивать рациональные и иррациональные числа;

  • упорядочивать числа, записанные в виде обыкновенной и десятичной дроби;

  • находить НОД и НОК и использовать их при решении задач.

В повседневной жизни и при изучении других предметов:

  • применять правила приближенных вычислений при решении практических задач и решении задач других учебных предметов;

  • выполнять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений;

  • составлять и оценивать числовые выражения при решении практических задач и задач из других учебных предметов;

  • записывать и округлять числовые данные реальных величин с использованием разных систем измерения

Тождественные преобразования

  • Оперировать понятиями степени с натуральным показателем, степени с целым отрицательным показателем;

  • выполнять преобразования целых выражений: действия с одночленами (сложение, вычитание, умножение), действия с многочленами (сложение, вычитание, умножение);

  • выполнять разложение многочленов на множители одним из способов: вынесение за скобку, группировка, использование формул сокращенного умножения;

  • выделять квадрат суммы и разности одночленов;

  • раскладывать на множители квадратный трёхчлен;

  • выполнять преобразования выражений, содержащих степени с целыми отрицательными показателями, переходить от записи в виде степени с целым отрицательным показателем к записи в виде дроби;

  • выполнять преобразования дробно-рациональных выражений: сокращение дробей, приведение алгебраических дробей к общему знаменателю, сложение, умножение, деление алгебраических дробей, возведение алгебраической дроби в натуральную и целую отрицательную степень;

  • выполнять преобразования выражений, содержащих квадратные корни;

  • выделять квадрат суммы или разности двучлена в выражениях, содержащих квадратные корни;

  • выполнять преобразования выражений, содержащих модуль.

В повседневной жизни и при изучении других предметов:

  • выполнять преобразования и действия с числами, записанными в стандартном виде;

  • выполнять преобразования целых выражений при решении задач других учебных предметов

Уравнения и неравенства

  • Оперировать понятиями: уравнение, неравенство, решение уравнения, решение неравенства, равносильные уравнения, область определения уравнения (неравенства, системы уравнений или неравенств);

  • решать линейные уравнения и уравнения, сводимые к линейным с помощью тождественных преобразований;

  • решать квадратные уравнения и уравнения, сводимые к квадратным с помощью тождественных преобразований;

  • решать дробно-линейные уравнения;

  • решать простейшие иррациональные уравнения: [pic] , [pic] ;

  • решать уравнения вида [pic] ;

  • решать уравнения способом разложения на множители и замены переменной;

  • использовать метод интервалов для решения целых и дробно-рациональных неравенств;

  • решать линейные уравнения и неравенства с параметрами;

  • решать несложные квадратные уравнения с параметром;

  • решать несложные системы линейных уравнений с параметрами;

  • решать несложные уравнения в целых числах.

В повседневной жизни и при изучении других предметов:

  • составлять и решать линейные и квадратные уравнения и уравнения, к ним сводящиеся, системы линейных уравнений и неравенств при решении задач других учебных предметов;

  • выполнять оценку правдоподобия результатов, получаемых при решении линейных и квадратных уравнений и систем линейных уравнений и неравенств при решении задач других учебных предметов;

  • выбирать уравнения, неравенства или их системы, для составления математической модели заданной реальной ситуации или прикладной задачи;

  • уметь интерпретировать полученный при решении уравнения, неравенства или системы результат в контексте заданной реальной ситуации или прикладной задачи

Функции

  • Оперировать понятиями: функциональная зависимость, функция, график функции, способы задания функции, аргумент и значение функции, область определения и множество значений функции, нули функции, промежутки знакопостоянства, монотонность функции, чётность/нечётность функции;

  • строить графики линейной, квадратичной функций, обратной пропорциональности, функции вида: [pic] , [pic] , [pic] [pic] , [pic] ;

  • на примере квадратичной функции, использовать преобразования графика функции y=f(x) для построения графиков функций [pic] ;

  • составлять уравнения прямой по заданным условиям: проходящей через две точки с заданными координатами, проходящей через данную точку и параллельной данной прямой;

  • исследовать функцию по её графику;

  • находить множество значений, нули, промежутки знакопостоянства, монотонности квадратичной функции;

  • оперировать понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия;

  • решать задачи на арифметическую и геометрическую прогрессию.

В повседневной жизни и при изучении других предметов:

  • осуществлять выбор графика реальной зависимости или процесса по его характеристикам;

  • использовать свойства и график квадратичной функции при решении задач из других учебных предметов

Статистика и теория вероятностей

  • Оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое, медиана, наибольшее и наименьшее значения выборки, размах выборки, дисперсия и стандартное отклонение, случайная изменчивость;

  • извлекать, информацию, представленную в таблицах, на диаграммах, графиках;

  • составлять таблицы, строить диаграммы и графики на основе данных;

  • оперировать понятиями: факториал числа, перестановки и сочетания, треугольник Паскаля;

  • оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями, основные комбинаторные формулы;

  • представлять информацию с помощью кругов Эйлера;

  • решать задачи на вычисление вероятности с подсчетом количества вариантов по формулам комбинаторики.

В повседневной жизни и при изучении других предметов:

  • извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах, на диаграммах, графиках, отражающую свойства и характеристики реальных процессов и явлений;

  • определять статистические характеристики выборок по таблицам, диаграммам, графикам, выполнять сравнение в зависимости от цели решения задачи;

  • оценивать вероятность реальных событий и явлений.

Текстовые задачи

  • Решать простые и сложные задачи разных типов, а также задачи повышенной трудности;

  • использовать разные краткие записи как модели текстов сложных задач для построения поисковой схемы и решения задач;

  • различать модель текста и модель решения задачи, конструировать к одной модели решения несложной задачи разные модели текста задачи;

  • знать и применять оба способа поиска решения задач (от требования к условию и от условия к требованию);

  • моделировать рассуждения при поиске решения задач с помощью граф-схемы;

  • выделять этапы решения задачи и содержание каждого этапа;

  • уметь выбирать оптимальный метод решения задачи и осознавать выбор метода, рассматривать различные методы, находить разные решения задачи, если возможно;

  • анализировать затруднения при решении задач;

  • выполнять различные преобразования предложенной задачи, конструировать новые задачи из данной, в том числе обратные;

  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

  • анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях;

  • исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчёта;

  • решать разнообразные задачи «на части»,

  • решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;

  • осознавать и объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение). выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задач указанных типов;

  • владеть основными методами решения задач на смеси, сплавы, концентрации;

  • решать задачи на проценты, в том числе, сложные проценты с обоснованием, используя разные способы;

  • решать логические задачи разными способами, в том числе, с двумя блоками и с тремя блоками данных с помощью таблиц;

  • решать задачи по комбинаторике и теории вероятностей на основе использования изученных методов и обосновывать решение;

  • решать несложные задачи по математической статистике;

  • овладеть основными методами решения сюжетных задач: арифметический, алгебраический, перебор вариантов, геометрический, графический, применять их в новых по сравнению с изученными ситуациях.

В повседневной жизни и при изучении других предметов:

  • выделять при решении задач характеристики рассматриваемой в задаче ситуации, отличные от реальных (те, от которых абстрагировались), конструировать новые ситуации с учётом этих характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества;

  • решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;

  • решать задачи на движение по реке, рассматривая разные системы отсчета

История математики

  • Характеризовать вклад выдающихся математиков в развитие математики и иных научных областей;

  • понимать роль математики в развитии России

Методы математики

  • Использовать основные методы доказательства, проводить доказательство и выполнять опровержение;

  • применять основные методы решения математических задач;

  • на основе математических закономерностей в природе, характеризовать эстетику окружающего мира и произведений искусства;

  • применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач

Выпускник получит возможность научиться для успешного продолжения образования на углублённом уровне

Элементы теории множеств и математической логики

  • Свободно оперировать понятиями: множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность, включение, равенство множеств, способы задание множества;

  • задавать множества разными способами;

  • проверять выполнение характеристического свойства множества;

  • свободно оперировать понятиями: высказывание, истинность и ложность высказывания, сложные и простые высказывания, отрицание высказываний;, истинность и ложность утверждения и его отрицания, операции над высказываниями: и, или, не. Условные высказывания (импликации);

  • строить высказывания с использованием законов алгебры высказываний.

В повседневной жизни и при изучении других предметов:

  • строить рассуждения на основе использования правил логики;

  • использовать множества, операции с множествами, их графическое представление для описания реальных процессов и явлений, при решении задач других учебных предметов

Числа

  • Свободно оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, иррациональное число, корень степени n, действительное число, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;

  • понимать и объяснять разницу между позиционной и непозиционной системами записи чисел;

  • переводить числа из одной системы записи (системы счисления) в другую;

  • доказывать и использовать признаки делимости на 2, 4, 8, 5, 3, 6, 9, 10, 11, суммы и произведения при выполнении вычислений и решении задач;

  • выполнять округление рациональных и иррациональных чисел с заданной точностью;

  • сравнивать действительные числа разными способами;

  • упорядочивать числа, записанные в виде обыкновенной и десятичной дроби, числа, записанные с использованием арифметического квадратного корня, корней степени больше 2;

  • находить НОД и НОК разными способами и использовать их при решении задач;

  • выполнять вычисления и преобразования выражений, содержащих действительные числа, в том числе корни натуральных степеней.

В повседневной жизни и при изучении других предметов:

  • выполнять и объяснять результаты сравнения результатов вычислений при решении практических задач, в том числе приближенных вычислений, используя разные способы сравнений;

  • записывать, сравнивать, округлять числовые данные реальных величин с использованием разных систем измерения;

  • составлять и оценивать разными способами числовые выражения при решении практических задач и задач из других учебных предметов

Тождественные преобразования

  • Свободно оперировать понятиями степени с целым и дробным показателем;

  • выполнять доказательство свойств степени с целыми и дробными показателями;

  • оперировать понятиями «одночлен», «многочлен», «многочлен с одной переменной», «многочлен с несколькими переменными», коэффициенты многочлена, «стандартная запись многочлена», степень одночлена и многочлена;

  • свободно владеть приемами преобразования целых и дробно-рациональных выражений;

  • выполнять разложение многочленов на множители разными способами, с использованием комбинаций различных приёмов;

  • использовать теорему Виета и теорему, обратную теореме Виета, для поиска корней квадратного трёхчлена и для решения задач, в том числе задач с параметрами на основе квадратного трёхчлена;

  • выполнять деление многочлена на многочлен с остатком;

  • доказывать свойства квадратных корней и корней степени n;

  • выполнять преобразования выражений, содержащих квадратные корни, корни степени n;

  • свободно оперировать понятиями «тождество», «тождество на множестве», «тождественное преобразование»;

  • выполнять различные преобразования выражений, содержащих модули.

В повседневной жизни и при изучении других предметов:

  • выполнять преобразования и действия с буквенными выражениями, числовые коэффициенты которых записаны в стандартном виде;

  • выполнять преобразования рациональных выражений при решении задач других учебных предметов;

  • выполнять проверку правдоподобия физических и химических формул на основе сравнения размерностей и валентностей

Уравнения и неравенства

  • Свободно оперировать понятиями: уравнение, неравенство, равносильные уравнения и неравенства, уравнение, являющееся следствием другого уравнения, уравнения, равносильные на множестве, равносильные преобразования уравнений;

  • решать разные виды уравнений и неравенств и их систем, в том числе некоторые уравнения 3 и 4 степеней, дробно-рациональные и иррациональные;

  • знать теорему Виета для уравнений степени выше второй;

  • понимать смысл теорем о равносильных и неравносильных преобразованиях уравнений и уметь их доказывать;

  • владеть разными методами решения уравнений, неравенств и их систем, уметь выбирать метод решения и обосновывать свой выбор;

  • использовать метод интервалов для решения неравенств, в том числе дробно-рациональных и включающих в себя иррациональные выражения;

  • решать алгебраические уравнения и неравенства и их системы с параметрами алгебраическим и графическим методами;

  • владеть разными методами доказательства неравенств;

  • решать уравнения в целых числах;

  • изображать множества на плоскости, задаваемые уравнениями, неравенствами и их системами.

В повседневной жизни и при изучении других предметов:

  • составлять и решать уравнения, неравенства, их системы при решении задач других учебных предметов;

  • выполнять оценку правдоподобия результатов, получаемых при решении различных уравнений, неравенств и их систем при решении задач других учебных предметов

  • составлять и решать уравнения и неравенства с параметрами при решении задач других учебных предметов;

  • составлять уравнение, неравенство или их систему, описывающие реальную ситуацию или прикладную задачу, интерпретировать полученные результаты

Функции

  • Свободно оперировать понятиями: зависимость, функциональная зависимость, зависимая и независимая переменные, функция, способы задания функции, аргумент и значение функции, область определения и множество значения функции, нули функции, промежутки знакопостоянства, монотонность функции, наибольшее и наименьшее значения, чётность/нечётность функции, периодичность функции, график функции, вертикальная, горизонтальная, наклонная асимптоты; график зависимости, не являющейся функцией,

  • строить графики функций: линейной, квадратичной, дробно-линейной, степенной при разных значениях показателя степени, [pic] ;

  • использовать преобразования графика функции [pic] для построения графиков функций [pic] ;

  • анализировать свойства функций и вид графика в зависимости от параметров;

  • свободно оперировать понятиями: последовательность, ограниченная последовательность, монотонно возрастающая (убывающая) последовательность, предел последовательности, арифметическая прогрессия, геометрическая прогрессия, характеристическое свойство арифметической (геометрической) прогрессии;

  • использовать метод математической индукции для вывода формул, доказательства равенств и неравенств, решения задач на делимость;

  • исследовать последовательности, заданные рекуррентно;

  • решать комбинированные задачи на арифметическую и геометрическую прогрессии.

В повседневной жизни и при изучении других предметов:

  • конструировать и исследовать функции, соответствующие реальным процессам и явлениям, интерпретировать полученные результаты в соответствии со спецификой исследуемого процесса или явления;

  • использовать графики зависимостей для исследования реальных процессов и явлений;

  • конструировать и исследовать функции при решении задач других учебных предметов, интерпретировать полученные результаты в соответствии со спецификой учебного предмета

Статистика и теория вероятностей

  • Свободно оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое, медиана, наибольшее и наименьшее значения выборки, размах выборки, дисперсия и стандартное отклонение, случайная изменчивость;

  • выбирать наиболее удобный способ представления информации, адекватный её свойствам и целям анализа;

  • вычислять числовые характеристики выборки;

  • свободно оперировать понятиями: факториал числа, перестановки, сочетания и размещения, треугольник Паскаля;

  • свободно оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями, основные комбинаторные формулы;

  • свободно оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями, основные комбинаторные формулы;

  • знать примеры случайных величин, и вычислять их статистические характеристики;

  • использовать формулы комбинаторики при решении комбинаторных задач;

  • решать задачи на вычисление вероятности в том числе с использованием формул.

В повседневной жизни и при изучении других предметов:

  • представлять информацию о реальных процессах и явлениях способом, адекватным её свойствам и цели исследования;

  • анализировать и сравнивать статистические характеристики выборок, полученных в процессе решения прикладной задачи, изучения реального явления, решения задачи из других учебных предметов;

  • оценивать вероятность реальных событий и явлений в различных ситуациях

Текстовые задачи

  • Решать простые и сложные задачи, а также задачи повышенной трудности и выделять их математическую основу;

  • распознавать разные виды и типы задач;

  • использовать разные краткие записи как модели текстов сложных задач и задач повышенной сложности для построения поисковой схемы и решения задач, выбирать оптимальную для рассматриваемой в задаче ситуации модель текста задачи;

  • различать модель текста и модель решения задачи, конструировать к одной модели решения сложных задач разные модели текста задачи;

  • знать и применять три способа поиска решения задач (от требования к условию и от условия к требованию, комбинированный);

  • моделировать рассуждения при поиске решения задач с помощью граф-схемы;

  • выделять этапы решения задачи и содержание каждого этапа;

  • уметь выбирать оптимальный метод решения задачи и осознавать выбор метода, рассматривать различные методы, находить разные решения задачи, если возможно;

  • анализировать затруднения при решении задач;

  • выполнять различные преобразования предложенной задачи, конструировать новые задачи из данной, в том числе обратные;

  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

  • изменять условие задач (количественные или качественные данные), исследовать измененное преобразованное;

  • анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние).при решение задач на движение двух объектов как в одном, так и в противоположных направлениях, конструировать новые ситуации на основе изменения условий задачи при движении по реке;

  • исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчёта;

  • решать разнообразные задачи «на части»;

  • решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;

  • объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение). выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задач указанных типов;

  • владеть основными методами решения задач на смеси, сплавы, концентрации, использовать их в новых ситуациях по отношению к изученным в процессе обучения;

  • решать задачи на проценты, в том числе, сложные проценты с обоснованием, используя разные способы;

  • решать логические задачи разными способами, в том числе, с двумя блоками и с тремя блоками данных с помощью таблиц;

  • решать задачи по комбинаторике и теории вероятностей на основе использования изученных методов и обосновывать решение;

  • решать несложные задачи по математической статистике;

  • овладеть основными методами решения сюжетных задач: арифметический, алгебраический, перебор вариантов, геометрический, графический, применять их в новых по сравнению с изученными ситуациях.

В повседневной жизни и при изучении других предметов:

  • конструировать новые для данной задачи задачные ситуации с учётом реальных характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества; решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;

  • решать задачи на движение по реке, рассматривая разные системы отсчёта;

  • конструировать задачные ситуации, приближенные к реальной действительности

Отношения

  • Владеть понятием отношения как межпредметным;

  • свободно оперировать понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция, подобие фигур, подобные фигуры, подобные треугольники;

  • использовать свойства подобия и равенства фигур при решении задач;

  • пользоваться симметриями при решении задач перенести в преобразования.

В повседневной жизни и при изучении других предметов:

  • использовать отношения для построения и исследования математических моделей объектов реальной жизни

Измерения и вычисления

  • Свободно оперировать понятиями длина, площадь, объём, величина угла как величинами, использовать равновеликость и равносоставленность при решении задач на вычисление, самостоятельно получать и использовать формулы для вычислений площадей и объёмов фигур, свободно оперировать широким набором формул на вычисление при решении сложных задач, в том числе и задач на вычисление в комбинациях окружности и треугольника, окружности и четырёхугольника, а также с применением тригонометрии;

  • самостоятельно формулировать гипотезы и проверять их достоверность.

В повседневной жизни и при изучении других предметов:

  • свободно оперировать формулами при решении задач в других учебных предметах и при проведении необходимых вычислений в реальной жизни

Преобразования

  • Оперировать движениями и преобразованиями как межпредметными понятиями;

  • оперировать понятием движения и преобразования подобия для обоснований, свободно владеть приемами построения фигур с помощью движений и преобразования подобия, а также комбинациями движений, движений и преобразований;

  • использовать свойства движений и преобразований для проведения обоснования и доказательства утверждений в геометрии и других учебных предметах.

В повседневной жизни и при изучении других предметов:

  • применять свойства движений и применять подобие для построений и вычислений

История математики

  • Понимать математику как строго организованную систему научных знаний, в частности владеть представлениями об аксиоматическом построении геометрии и первичными представлениями о неевклидовых геометриях;

  • рассматривать математику в контексте истории развития цивилизации и истории развития науки, понимать роль математики в развитии России

Методы математики

  • Владеть знаниями о различных методах обоснования математических утверждений и самостоятельно применять их;

  • владеть типологией задач и пользоваться этой типологией при выборе метода решения;

  • характеризовать произведения искусства с учётом математических закономерностей в природе, использовать математические закономерности в самостоятельном творчестве











10