Рабочая программа по алгебре 7 класс ФГОС

Автор публикации:

Дата публикации:

Краткое описание: ...


  1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА



Рабочая программа «Алгебра» учебного предмета «Математика и информатика» основного общего образования составлена на основе:

-требований Федерального государственного образовательного стандарта основного общего образования, предъявляемых к результатам освоения основной образовательной программы (Приказ Министерства образования и науки РФ от 17 декабря 2010 г. № 1897 «Об утверждении федерального государственного образовательного стандарта основного общего образования» с изменениями и дополнениями Приказом Минобрнауки России от 29 декабря 2014 г. № 1644);

-примерной программы по математике основного общего образования (одобренной Федеральным учебно-методическим объединением по общему образованию, Протокол заседания от 8 апреля 2015 г. № 1/15) с учетом авторской программы предметам «Математика 5 – 9 класс: проект» (М.: Просвещение, 2011 г). В ней также учитываются основные идеи и положения Программы развития и формирования универсальных учебных действий для основного общего образования.

Рабочая программа по алгебре для 7 класса составлена на основе Федерального компонента государственного стандарта среднего (полного) общего образования. Федеральный базисный учебный план для общеобразовательных учреждений РФ отводит 102 часа из расчета 3 ч в неделю. Программа конкретизирует содержание предметных тем, предлагает распределение предметных часов по разделам курса, последовательность изучения тем и разделов с учетом межпредметных и внутрипредметных связей, логики учебного процесса, возрастных особенностей учащихся. Определен также перечень самостоятельных и практических работ и выполняет две основные функции:

Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета.

Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации учащихся.

Рабочая программа определяет инвариантную (обязательную) часть учебного курса, то есть перечень вопросов, которые подлежат обязательному изучению в школе и включает материал, создающий основу математической грамотности. Рабочая программа содействует сохранению единого образовательного пространства, не сковывая творческой инициативы учителя, и предоставляет возможности для реализации различных подходов к построению учебного курса.

2. Общая характеристика учебного предмета

Цели:


Формирование культурного человека, умеющего мыслить, понимающего идеологию

математического моделирования реальных процессов, владеющего математическим языком не как языком общения, а как языком, организующим деятельность, умеющего самостоятельно добывать информацию и пользоваться ею на практике, владеющего литературной речью и умеющего в случае необходимости построить ее по законам математической речи.

  Развитие:

  • Ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

  • Математической речи;

  • Сенсорной сферы; двигательной моторики;

  • Внимания; памяти;

  • Навыков само и взаимопроверки.

Формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов.

 Воспитание:

  • Культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;

  • Волевых качеств;

  • Коммуникабельности;

  • Ответственности.

Задачи:

  • сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;

  • овладеть символическим языком алгебры, выработать формально-оперативные

алгебраические умения и научиться применять их к решению математических и нематематических задач;

  • изучить свойства и графики элементарных функций, научиться использовать

функционально-графические представления для описания и анализа реальных зависимостей;

  • развить логическое мышление и речь — умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

  • сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.



Алгебра нацелена на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира. Одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и других), для формирования у учащихся представлений о роли математики в развитии цивилизации и культуры.

3. Описание места учебного предмета



Согласно Федеральному базисному учебному плану для образовательных учреждений Российской Федерации для обязательного изучения алгебры на этапе основного общего образования отводится 102 часов из расчета 3 часа в неделю.



Контрольные работы

1 четверть

3

2 четверть

2

3 четверть

3

4 четверть

2

За год

10











4. ЛИЧНОСТНЫЕ, МЕТАПРЕДМЕТНЫЕ И ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ КУРСА.


В Примерной программе для основной школы, составленной на основе федерального государственного образовательного стандарта, определены требования к результатам освоения образовательной программы по математике.

Личностными результатами обучения математике в основной школе являются:

1) умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

2) критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

3) представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;

4) креативность мышления, инициатива, находчивость, активность при решении математических задач;

5) умение контролировать процесс и результат учебной математической деятельности;

6) способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.

Метапредметными результатами обучения математике в основной школе являются:

1) первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;

2) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

3) умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

4) умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;

5) умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

6) умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

7) понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

8) умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

9) умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.

Общими предметными результатами обучения математике в основной школе являются:

1) овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (число, одночлен, многочлен, алгебраическая дробь, уравнение, функция, вероятность) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;

2) умение работать с математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений;

3) развитие представлений о числе и числовых системах от натуральных до действительных чисел; овладение навыками  устных, письменных, инструментальных вычислений;

4) овладение символьным языком алгебры, приемами выполнения тождественных преобразований рациональных выражений, решения уравнений, систем уравнений; умение использовать идею координат на плоскости для интерпретации уравнений, систем; умение применять алгебраические преобразования, аппарат уравнений для решения задач из различных разделов курса;

5) овладение системой функциональных понятий, функциональным языком и символикой; умение использовать функционально-графические представления для описания и анализа реальных зависимостей;

6) овладение основными способами представления и анализа статистических данных; наличие представлений о статистических закономерностях в реальном мире и о различных способах их изучения, о вероятностных моделях;

7) умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.

5. СОДЕРЖАНИЕ ОБУЧЕНИЯ.


  1. Математический язык. Математическая модель - 14 часов

Числовые и алгебраические выражения. Что такое математический язык и математическая модель. Линейное уравнение с одной переменной. Линейное уравнение с одной переменной как математическая модель реальной ситуации. Координатная прямая. Виды числовых промежутков на координатной прямой.

  1. Линейная функция-10 часов

Координатная плоскость. Линейное уравнение с двумя переменными. Линейная функция. Возрастание и убывание линейной функции. Взаимное расположение графиков линейных функций.

  1. Системы двух линейных уравнений с двумя переменными-13 часов

Основные понятия о системах двух линейных уравнений с двумя переменными. Методы решения систем двух линейных уравнений с двумя переменными: графический, подстановки и алгебраического сложения. Системы двух линейных уравнений как математические модели реальных ситуаций.

  1. Степень с натуральным показателем и ее свойства-6 часов

Понятие степени с натуральным показателем; свойства степеней. Степень с нулевым показателем.

  1. Одночлены. Арифметические операции над одночленами-8 часов

Понятие одночлена. Стандартный вид одночлена. Сложение и вычитание одночленов. Умножение одночленов. Возведение одночленов в натуральную степень. Деление одночлена на одночлен.

  1. Многочлены. Арифметические операции над многочленами-16 часов

Понятие многочлена. Сложение и вычитание многочленов. Умножение многочлена на одночлен. Умножение многочлена на многочлен. Формулы сокращенного умножения. Деление многочлена на одночлен. Применять различные формы самоконтроля при выполнении преобразований.

  1. Разложение многочленов на множители-18 часов

Понятие о разложении многочлена на множители. Вынесение общего множителя за скобки. Способ группировки. Разложение многочлена на множители с помощью формул сокращенного умножения и комбинации различных приемов. Сокращение алгебраических дробей. Тождества.

  1. Функция -9 часов

Функция и ее график. Функция и ее график. Графическое решение уравнений. Функциональная символика.

  1. Элементы логики, комбинаторики, статистики-6 часов

Данные и ряды данных. Упорядоченные ряды данных, таблицы распределения. Частота результата, таблица распределения частот, процентные частоты. Группировка данных.

  1. Повторение – 2 часа.


6. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ КУРСА АЛГЕБРЫ В 7 КЛАССЕ

Метапредметные результаты:

  • умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учебе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности;

  • умение самостоятельно планировать пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;

  • умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;

  • умение оценивать правильность выполнения учебной задачи, собственные возможности ее решения;

  • владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности;

  • умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение и делать выводы;

  • умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач;

  • смысловое чтение; умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками;

  • работать индивидуально и в группе; умение осознанно использовать речевые средства в соответствии с задачей коммуникации для выражения своих чувств, мыслей и потребностей;

  • планирования и регуляции своей деятельности; владение устной и письменной речью.

Личностные результаты:

  • готовность и способность обучающихся к саморазвитию и личностному самоопределению,

  • сформированность их мотивации к обучению и целенаправленной познавательной деятельности, системы значимых социальных и межличностных отношений, ценностно-смысловых установок,

  • способность ставить цели и строить жизненные планы.

Предметные результаты:

  • Формирование представлений о математике как о методе познания действительности, позволяющем описывать и изучать реальные процессы и явления.

  • Развитие умений работать с учебным математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли с применением математической терминологии и символики, проводить классификации, логические обоснования, доказательства математических утверждений.

  • Овладение геометрическим языком; развитие умения использовать его для описания предметов окружающего мира;

  • развитие пространственных представлений, изобразительных умений, навыков геометрических построений.

  • Формирование систематических знаний о плоских фигурах и их свойствах;

  • развитие умений моделирования реальных ситуаций на языке геометрии, исследования построенной модели с использованием геометрических понятий и теорем, аппарата алгебры, решения геометрических и практических задач.


Выпускник научится:

Элементы теории множеств и математической логики

  • Оперировать на базовом уровне понятиями: множество, элемент множества, подмножество, принадлежность;

  • задавать множества перечислением их элементов;

  • находить пересечение, объединение, подмножество в простейших ситуациях;

  • оперировать на базовом уровне понятиями: определение, аксиома, теорема, доказательство;

  • приводить примеры и контрпримеры для подтверждения своих высказываний.

В повседневной жизни и при изучении других предметов:

  • использовать графическое представление множеств для описания реальных процессов и явлений, при решении задач других учебных предметов.

Числа

  • Оперировать на базовом уровне понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанная дробь, рациональное число, арифметический квадратный корень;

использовать свойства чисел и правила действий при выполнении вычислений

  • распознавать рациональные и иррациональные числа;

  • сравнивать числа.

В повседневной жизни и при изучении других предметов:

  • оценивать результаты вычислений при решении практических задач;

  • выполнять сравнение чисел в реальных ситуациях;

  • составлять числовые выражения при решении практических задач и задач из других учебных предметов.

Тождественные преобразования

  • Выполнять несложные преобразования для вычисления значений числовых выражений, содержащих степени с натуральным показателем, степени с целым отрицательным показателем;

  • выполнять несложные преобразования целых выражений: раскрывать скобки, приводить подобные слагаемые;

  • использовать формулы сокращенного умножения (квадрат суммы, квадрат разности, разность квадратов) для упрощения вычислений значений выражений;

  • выполнять несложные преобразования дробно-линейных выражений и выражений с квадратными корнями.

В повседневной жизни и при изучении других предметов:

  • понимать смысл записи числа в стандартном виде;

  • оперировать на базовом уровне понятием «стандартная запись числа».

Уравнения и неравенства

  • Оперировать на базовом уровне понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения, числовое неравенство, неравенство, решение неравенства;

  • проверять справедливость числовых равенств и неравенств;

  • решать линейные неравенства и несложные неравенства, сводящиеся к линейным;

  • решать системы несложных линейных уравнений, неравенств;

  • проверять, является ли данное число решением уравнения (неравенства);

  • решать квадратные уравнения по формуле корней квадратного уравнения;

  • изображать решения неравенств и их систем на числовой прямой.

В повседневной жизни и при изучении других предметов:

  • составлять и решать линейные уравнения при решении задач, возникающих в других учебных предметах.

Функции

  • Находить значение функции по заданному значению аргумента;

  • находить значение аргумента по заданному значению функции в несложных ситуациях;

  • определять положение точки по ее координатам, координаты точки по ее положению на координатной плоскости;

  • по графику находить область определения, множество значений, нули функции, промежутки знакопостоянства, промежутки возрастания и убывания, наибольшее и наименьшее значения функции;

  • строить график линейной функции;

  • проверять, является ли данный график графиком заданной функции (линейной, квадратичной, обратной пропорциональности);

  • определять приближенные значения координат точки пересечения графиков функций;

  • В повседневной жизни и при изучении других предметов:

  • использовать графики реальных процессов и зависимостей для определения их свойств (наибольшие и наименьшие значения, промежутки возрастания и убывания, области положительных и отрицательных значений и т.п.);

  • использовать свойства линейной функции и ее график при решении задач из других учебных предметов.

Статистика и теория вероятностей

  • Иметь представление о статистических характеристиках, вероятности случайного события, комбинаторных задачах;

  • решать простейшие комбинаторные задачи методом прямого и организованного перебора;

  • представлять данные в виде таблиц, диаграмм, графиков;

  • читать информацию, представленную в виде таблицы, диаграммы, графика;

  • определять основные статистические характеристики числовых наборов;

  • оценивать вероятность события в простейших случаях;

  • иметь представление о роли закона больших чисел в массовых явлениях.

  • В повседневной жизни и при изучении других предметов:

  • оценивать количество возможных вариантов методом перебора;

  • иметь представление о роли практически достоверных и маловероятных событий;

  • сравнивать основные статистические характеристики, полученные в процессе решения прикладной задачи, изучения реального явления;

  • оценивать вероятность реальных событий и явлений в несложных ситуациях.

Текстовые задачи

  • Решать несложные сюжетные задачи разных типов на все арифметические действия;

  • строить модель условия задачи (в виде таблицы, схемы, рисунка или уравнения), в которой даны значения двух из трех взаимосвязанных величин, с целью поиска решения задачи;

  • осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию;

  • составлять план решения задачи;

  • выделять этапы решения задачи;

  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

  • знать различие скоростей объекта в стоячей воде, против течения и по течению реки;

  • решать задачи на нахождение части числа и числа по его части;

  • решать задачи разных типов (на работу, на покупки, на движение), связывающих три величины, выделять эти величины и отношения между ними;

  • находить процент от числа, число по проценту от него, находить процентное снижение или процентное повышение величины;

  • решать несложные логические задачи методом рассуждений.

  • В повседневной жизни и при изучении других предметов:

  • выдвигать гипотезы о возможных предельных значениях искомых в задаче величин (делать прикидку).

История математики

Описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;

знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей;

понимать роль математики в развитии России.

Методы математики

Выбирать подходящий изученный метод для решения изученных типов математических задач;

Приводить примеры математических закономерностей в окружающей действительности и произведениях искусства.


Выпускник получит возможность научиться:

Элементы теории множеств и математической логики

  • Оперировать понятиями: определение, теорема, аксиома, множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность, включение, равенство множеств;

  • изображать множества и отношение множеств с помощью кругов Эйлера;

  • определять принадлежность элемента множеству, объединению и пересечению множеств;

  • задавать множество с помощью перечисления элементов, словесного описания;

В повседневной жизни и при изучении других предметов:

  • строить цепочки умозаключений на основе использования правил логики; [link]

    13