Элективный курс «Методы решения задач по математике»

Автор публикации:

Дата публикации:

Краткое описание: Данный элективный курс направлен на формирование умений и способов деятельности, связанных с решением задач повышенного и высокого уровня сложности, получение дополнительных знаний по математике, интегрирующих усвоенные знания в систему. Рабочая программа элективного ...


Элективный курс «Методы решения задач по математике»


ПОЯСНИТЕЛЬНАЯ ЗАПИСКА


Элективный курс «Методы решения задач по математике» соответствует целям и задачам обучения в старшей школе. Основная функция данного элективного курса – дополнительная подготовка учащихся 11 классов к государственной итоговой аттестации в форме ЕГЭ, к продолжению образования.

Содержание рабочей программы элективного курса соответствует основному курсу математики для средней (полной) школы и федеральному компоненту Государственного образовательного стандарта по математике; развивает базовый курс математики на старшей ступени общего образования, реализует принцип дополнения изучаемого материала на уроках алгебры и начал анализа системой упражнений, которые углубляют и расширяют школьный курс, и одновременно обеспечивает преемственность в знаниях и умениях учащихся основного курса математики 11 классов, что способствует расширению и углублению базового общеобразовательного курса алгебры и начал анализа и курса геометрии.

Данный элективный курс направлен на формирование умений и способов деятельности, связанных с решением задач повышенного и высокого уровня сложности, получение дополнительных знаний по математике, интегрирующих усвоенные знания в систему.

Рабочая программа элективного курса отвечает требованиям обучения на старшей ступени, направлена на реализацию личностно ориентированного обучения, основана на деятельностном подходе к обучению, предусматривает овладение учащимися способами деятельности, методами и приемами решения математических задач. Включение уравнений и неравенств нестандартных типов, комбинированных уравнений и неравенств, текстовых задач разных типов, рассмотрение методов и приемов их решений отвечают назначению элективного курса – расширению и углублению содержания курса математики с целью подготовки учащихся 11 классов к государственной итоговой аттестации в форме ЕГЭ.

Содержание структурировано по блочно-модульному принципу, представлено в законченных самостоятельных модулях по каждому типу задач и методам их решения и соответствует перечню контролируемых вопросов в контрольно-измерительных материалах на ЕГЭ.

На учебных занятиях элективного курса используются активные методы обучения, предусматривается самостоятельная работа по овладению способами деятельности, методами и приемами решения математических задач. Рабочая программа данного курса направлена на повышение уровня математической культуры старшеклассников.

С целью контроля и проверки усвоения учебного материала проводятся длительные домашние контрольные работы по каждому блоку, семинары с целью обобщения и систематизации. В учебно-тематическом плане определены виды контроля по каждому блоку учебного материала в различных формах (домашние контрольные работы на длительное время, обобщающие семинары).

Рабочая программа элективного курса «Методы решения задач по математике» рассчитана на один год обучения, 1 час в неделю, всего в объеме – 34 часа.


Цели


Изучение математики на ступени основного общего образования направлено на достижение следующих ц е л е й:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.


Цель курса


Основная цель курса:

  • дополнительная подготовка учащихся 11 классов к государственной итоговой аттестации в форме ЕГЭ, к продолжению образования.

Курс призван помочь учащимся с любой степенью подготовленности в овладении способами деятельности, методами и приемами решения математических задач, повысить уровень математической культуры, способствует развитию познавательных интересов, мышления учащихся, умению оценить свой потенциал для дальнейшего обучения в профильной школе.

Результаты обучения


Результаты обучения представлены в Требованиях к уровню подготовки, задающих систему итоговых результатов обучения, которые должны быть достигнуты всеми учащимися, оканчивающими основную школу, и достижение которых является обязательным условием положительной аттестации ученика за курс основной школы. Эти требования структурированы по трем компонентам: «знать/понимать», «уметь», «использовать приобретенные знания и умения в практической деятельности и повседневной жизни».


СОДЕРЖАНИЕ ПРОГРАММЫ



Тема 1. Методы решения уравнений и неравенств

Уравнения, содержащие модуль. Приемы решения уравнений с модулем.

Решение неравенств, содержащих модуль.

Тригонометрические уравнения и неравенства. Иррациональные уравнения.



Тема 2. Типы геометрических задач, методы их решения

Решение планиметрических задач различного вида.

Тема 3. Текстовые задачи. Основные типы текстовых задач. Методы решения

Приемы решения текстовых задач на «работу», «движение», «проценты», «смеси», «концентрацию», «пропорциональное деление». Задачи в контрольно-измерительных материалах ЕГЭ.



Тема 4. Тригонометрия

Формулы тригонометрии. Преобразование тригонометрических выражений. Тригонометрические уравнения и неравенства.

Системы тригонометрических уравнений и неравенств.

Тригонометрия в задачах ЕГЭ.



Тема 5. Логарифмические и показательные уравнения и неравенства

Методы решения логарифмических и показательных уравнений и неравенств. Логарифмическая и показательная функции, их свойства. Применение свойств логарифмической и показательной функции при решении уравнений и неравенств.

Логарифмические и показательные уравнения, неравенства, системы уравнений и неравенств в задачах ЕГЭ.



Тема 6. Методы решения задач с параметром

Линейные уравнения и неравенства с параметром, приемы их решения.

Дробно-рациональные уравнения и неравенства с параметром, приемы их решения.

Квадратный трехчлен с параметром. Свойства корней квадратного трехчлена.

Квадратные уравнения с параметром, приемы их решения.

Параметры в задачах ЕГЭ.



Тема 7. Обобщающее повторение курса математики

Тригонометрия.

Применение производной в задачах на нахождение наибольшего и наименьшего значений функции.

Уравнения и неравенства с параметром.

Логарифмические и показательные уравнения и неравенства.

Геометрические задачи в заданиях ЕГЭ.



ТЕМАТИЧЕСКИЙ ПЛАН


УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН


Основные виды деятельности ученика

(на уровне учебных действий)

Дата


1гр



2гр

1. Методы решения уравнений и неравенств (4 ч)

1.1

Уравнения, содержащие модуль. Приемы решения уравнений с модулем. Решение неравенств, содержащих модуль

1

Применять приемы раскрытия модуля и свойства модуля в решении уравнений и неравенств

03.09

03.09

1.2

Тригонометрические уравнения и неравенства


1

Использовать общие приемы решения уравнений и частные методы в решении тригонометрических уравнений. Применять методы решения тригонометрических неравенств

10.09

10.09

1.3

Иррациональные уравнения

1

При решении иррациональных уравнений применять специфические методы, отбирать корни уравнений

17.09

17.09

1.4

Домашняя контрольная работа № 1



24.09

24.09

2. Типы геометрических задач, методы их решения (5 ч)

2.1

Решение планиметрических задач различного вида

1

Решать планиметрические задачи на конфигурации фигур

01.10

01.10

2.2

Решение стереометрических задач различного вида

1

Решать простейшие стереометрические

задачи различного вида

08.10

08.10

2.3

Геометрия в задачах контрольно-измерительных материалов ЕГЭ

3

Решать планиметрические и стереометрические задачи разного уровня сложности КИМов ЕГЭ

15.10

22.10

29.10

15.10

22.10

29.10

2.4

Домашняя контрольная работа № 2





3. Текстовые задачи. Основные типы текстовых задач. Методы решения (4 ч)

3.1

Приемы решения текстовых задач на «работу», «движение»

1

Решать текстовые задачи на «работу», «движение» арифметическим и алгебраическим способами

12.11

12.19

3.2

Приемы решения текстовых задач на «проценты», «пропорциональное деление»

1

Решать текстовые задачи на «проценты», «пропорциональное деление» арифметическим и алгебраическим способами

19.11

19.11

3.3

Приемы решения текстовых задач на «смеси», «концентрацию»

1

Решать текстовые задачи на «смеси», «концентрацию» арифметическим и алгебраическим способами

26.11

26.11

3.4

Текстовые задачи в контрольно-измерительных материалах ЕГЭ


1

Решать текстовые задачи разного уровня сложности КИМов ЕГЭ арифметическим и алгебраическим способами

03.12

03.12

3.5

Домашняя контрольная работа № 3





4. Тригонометрия (5 ч)

4.1

Формулы тригонометрии. Преобразование тригонометрических выражений

1

Использовать формулы тригонометрии в преобразовании тригонометрических выражений

10.12

10.12

4.2

Тригонометрические уравнения и неравенства

1

Использовать общие приемы решения уравнений и частные методы в решении тригонометрических уравнений. Применять методы решения тригонометрических неравенств

17.12

17.12

4.3

Системы тригонометрических уравнений и неравенств. Методы решения

1

Решать системы тригонометрических уравнений, отбирать корни уравнений

24.12

24.12

4.4

Тригонометрия в задачах контрольно-измерительных материалов ЕГЭ

2

Классифицировать тригонометрические задачи в контрольно-измерительных материалах по типам

16.01

23.01

15.01

22.01

4.5

Домашняя контрольная работа № 4





5. Логарифмические и показательные уравнения и неравенства (5 ч)

5.1

Логарифмическая и показательная функции, их свойства

1

Анализировать свойства логарифмической и показательной функций



5.2

Применение свойств логарифмической и показательной функций при решении уравнений и неравенств

2

Решать логарифмические и показательные уравнения и неравенства на основе свойств функций



5.3

Логарифмические и показательные уравнения, неравенства, системы уравнений и неравенств в задачах ЕГЭ, методы решения

2

Вести поиск методов решения логарифмических и показательных уравнений, неравенств, их систем, включенных в контрольно-измерительные материалы ЕГЭ



5.4

Домашняя контрольная работа № 5





6. Методы решения задач с параметром (5 ч)

6.1

Линейные уравнения и неравенства с параметром, приемы их решения

1

Решать линейные уравнения и неравенства, содержащие параметр



6.2

Дробно-рациональные уравнения и неравенства с параметром, приемы их решения

1

Вести поиск решения дробно-рациональных уравнений и неравенств с параметром



6.3

Квадратный трехчлен с параметром. Свойства корней трехчлена

1

Исследовать квадратный трехчлен с параметром на наличие корней



6.4

Квадратные уравнения с параметром, приемы их решения.

1

Исследовать квадратные уравнения с параметрами.



6.5

Параметры в задачах ЕГЭ

1

Решать уравнения с параметрами разного уровня сложности



6.6

Домашняя контрольная работа № 6





7. Обобщающее повторение курса математики (5 ч)

7.1

Тригонометрия

1

Решать тригонометрические задачи из контрольно-измерительных материалов ЕГЭ



7.2

Применение производной в задачах на нахождение наибольшего и наименьшего значений функции

1

Решать задачи на нахождение наибольшего и наименьшего значений функции по алгоритму



7.3

Уравнения и неравенства с параметрами

1

Обобщать и систематизировать приемы решения уравнений и неравенств с параметрами



7.4

Логарифмические и показательные уравнения и неравенства. Методы их решения

1

Анализировать методы решения логарифмических и показательных уравнений



7.5

Геометрические задачи в заданиях ЕГЭ

1

Анализировать КИМы ЕГЭ и выделить геометрические задачи по типам



8. Итоговое занятие (1 ч)

8.1

Семинар «Задания повышенного и высокого уровня сложности в ЕГЭ, поиск идей и методов решения»

1

Проводить исследовательскую работу по поиску идей и методов решения заданий повышенного и высокого уровня сложности в ЕГЭ




ИТОГО

34




ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ОБУЧАЮЩИХСЯ


В результате изучения курса ученик должен

знать/понимать

  • определение модуля числа, свойства модуля, геометрический смысл модуля;

  • алгоритм решения линейных, квадратных, дробно-рациональных уравнений, систем уравнений, содержащих модуль;

  • алгоритм решения линейных, квадратных, дробно-рациональных неравенств, систем неравенств, содержащих модуль;

  • приемы построения графиков линейных, квадратичных, дробно-рациональных, тригонометрических; логарифмической и показательной функций;

  • алгоритм Евклида, теорему Безу, метод неопределенных коэффициентов;

  • формулы тригонометрии;

  • понятие арк-функции;

  • свойства тригонометрических функций;

  • методы решения тригонометрических уравнений и неравенств и их систем;

  • свойства логарифмической и показательной функций;

  • методы решения логарифмических и показательных уравнений, неравенств и их систем;

  • понятие многочлена;

  • приемы разложения многочленов на множители;

  • понятие параметра;

  • поиски решений уравнений, неравенств с параметрами и их систем;

  • алгоритм аналитического решения простейших уравнений и неравенств с параметрами;

  • методы решения геометрических задач;

  • приемы решения текстовых задач на «работу», «движение», «проценты», «смеси», «концентрацию», «пропорциональное деление»;

  • понятие производной;

  • понятие наибольшего и наименьшего значения функции;


уметь

  • точно и грамотно формулировать теоретические положения и излагать собственные рассуждения в ходе решения заданий;

  • выполнять тождественные преобразования алгебраических выражений и тригонометрических выражений;

  • решать уравнения, неравенства с модулем и их системы;

  • строить графики линейных, квадратичных, дробно-рациональных, тригонометрических; логарифмической и показательной функций;

  • выполнять действия с многочленами, находить корни многочлена;

  • выполнять преобразования тригонометрических выражений, используя формулы;

  • объяснять понятие параметра;

  • искать решения уравнений, неравенств с параметрами и их систем;

  • аналитически решать простейшие уравнений и неравенства с параметрами;

  • решать текстовые задачи на «работу», «движение», «проценты», «смеси», «концентрацию», «пропорциональное деление»;


использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения тождественных преобразований выражений, содержащих знак модуля;

  • решения линейных, квадратных, дробно-рациональных уравнений вида: f|x|= a; |f(x)|= a; |f(x)|= g(x); |f(x)|= |g(x)|;

  • решения уравнений, содержащих несколько модулей; уравнений с «двойным» модулем;

  • решения системы уравнений, содержащих модуль;

  • решения линейных, квадратных, дробно-рациональных неравенств вида: f|x| > a; |f(x)| ≤ a; |f(x)| ≤ g(x); |f(x)| ≤ |g(x)|; |f(x)| > g(x);

  • решения неравенств, содержащих модуль в модуле;

  • решения систем неравенств, содержащих модуль;

  • построения графиков линейных, квадратичных, дробно-рациональных функций содержащих модуль;

  • поиска решения уравнений, неравенств с параметрами и их систем;

  • аналитического решения простейших уравнений и неравенств с параметрами;

  • описания свойств квадратичной функции;

  • построения «каркаса» квадратичной функции;

  • нахождения соотношения между корнями квадратного уравнения.


ЛИТЕРАТУРА ДЛЯ УЧАЩИХСЯ


  1. Мордкович А. Г., Мишустина Т. Н., Тульчинская Е. Е. Алгебра. 9 класс. Задачник. М.: Мнемозина, 2004.

  2. Галицкий М. Л. (и др.). Сборник задач по алгебре для 8-9 классов учебное пособие для учащихся школ и классов с углубленным изучением математики. М.: Просвещение, 1999.

  3. Макарычев Ю. Н. Алгебра: Дополнительные главы к школьному учебнику. 9 класс. Учебное пособие для учащихся школ и классов с углубленным изучением математики. М.: Просвещение, 2000.

  4. П.И. Горнштейн, В.Б. Полонский, М.С. Якир. Задачи с параметрами. 3-е издание, дополненное и переработанное. - М.: Илекса, Харьков: Гимназия, 2005, - 328 с.

  5. Демонстрационные версии экзаменационной работы по алгебре в 2011 году, в 2012 году, в 2013 году. – М.: Федеральная служба по надзору в сфере образования и науки, 2011, 2012, 2013. – Режим доступа:

http// www fipi.ru.


ЛИТЕРАТУРА ДЛЯ УЧИТЕЛЯ


  1. Федеральный компонент государственного стандарта общего образования. Математика. Основное общее образование; 2004 г.

  2. Сборник нормативных документов. Математика /сост. Э.Д.Днепров, А.Г.Аркадьев. – 3-е изд., стереотип. – М.: Дрофа, 2009. – 128 с.

  3. Программы для общеобразовательных учреждений: Алгебра. 7-9 кл. / сост. Т.А.Бурмистрова. – М.: Просвещение, 2008.

  4. Маркова В. И. Деятельностный подход в обучении математике в условиях предпрофильной подготовки и профильного обучения. Учебно-методическое пособие. Киров – 2006.

  5. Итоговая аттестация по математике в 9-м классе: новая форма [Текст] / автор-сост. В.И.Маркова. – Киров: КИПК и ПРО, 2008. – 98 с.

  6. Студенецкая В. Н., Сагателова Л. С. Математика. 8-9 классы: сборник элективных курсов. Волгоград: Учитель, 2006.

  7. Кузнецова Л. В. Алгебра. Сборник заданий для подготовки к итоговой аттестации в 9 классе. [Текст] / Л.В. Кузнецова, С.Б.Суворова, Л.О.Рослова. – М.: Просвещение, 2006. – 191 с.

  8. Ткачук В. В. Математика – абитуриенту. М.: МЦНМО, ТЕИС, 1996.

  9. Егерман Е. Задачи с модулем. 9 – 10 классы. Математика. Приложение к газете «Первое сентября» 2004, № 23 с. 18-20, № 25-26 с. 27-33, № 27-28 с. 37-41.

  10. Захарова В. Модуль и графики. 6-8 классы. Математика. Приложение к газете «Первое сентября» 2002, № 36 с. 4-8, 10.

  11. Захарова В. Модуль и графики. 6-11 классы. Математика. Приложение к газете «Первое сентября» 2002, №41 с. 28-32.

  12. Кузнецова О. Выражения, уравнения, неравенства, функции, содержащие модуль. 8 класс. Математика. Приложение к газете «Первое сентября» 2002, № 30 с. 23-25, № 31 с. 23-25.

  13. Сканави М. И. Сборник задач по математике для поступающих во втузы. Тбилиси, 1992.

  14. Скворцова М. Уравнения и неравенства с модулем. 8-9 классы. Математика. 2004, № 20 с.

  15. Муслинов, В. С. Задачи с параметрами. [Электронный ресурс]/ [link]

  16. Демонстрационные версии экзаменационной работы по алгебре в 2008 году, в 2009 году, в 2010 году. – М.: Федеральная служба по надзору в сфере образования и науки, 2008, 2009, 2010. – Режим доступа:

http:// www.fipi.ru.