ТЕОРЕМЫ ЧЕВЫ И МЕНЕЛАЯ
Теорема Чевы
Большинство замечательных точек треугольника могут быть получены при помощи следующей процедуры. Пусть имеется некоторое правило, согласно которому мы сможем выбрать определенную точку A1, на стороне BC (или её продолжении) треугольника ABC (например, выберем середину этой стороны). Затем построим аналогичные точки B1, C1 на двух других сторонах треугольника (в нашем примере еще две середины сторон). Если правило выбора удачное, то прямые AA1, BB1, CC1 пересекутся в некоторой точке Z (выбор середин сторон в этом смысле, конечно, удачный, так как медианы треугольника пересекаются в одной точке).
Хотелось бы иметь какой-нибудь общий метод, позволяющий по положению точек на сторонах треугольника определять, пересекается ли соответствующая тройка прямых в одной точке или нет.
Универсальное условие, «закрывшее» эту проблему, нашёл в 1678 г. итальянский инженер Джованни Чева.
Определение. Отрезки, соединяющие вершины треугольника с точками на противолежащих сторонах (или их продолжениях), называют чевианами, если они пересекаются в одной точке.
Возможны два варианта расположения чевиан. В одном варианте точка
[pic]
[pic]
пересечения – внутренняя, а концы чевиан лежат на сторонах треугольника. Во втором варианте точка пересечения внешняя, конец одного чевиана лежит на стороне, а у двух других чевиан концы лежат на продолжениях сторон (смотри чертежи).
Теорема 3. (Прямая теорема Чевы) В произвольном треугольнике АВС на сторонах ВС, СА, АВ или их продолжениях взяты соответственно точки А1, В1, С1, такие, что прямые АА1, ВВ1, СС1 пересекаются в некоторой общей точке, тогда
[pic] .
Доказательство: известно несколько оригинальных доказательств теоремы Чевы, мы рассмотрим доказательство, основанное на двукратном применении теоремы Менелая. Запишем соотношение теоремы Менелая первый раз для треугольника ABB1 и секущей CC1 (точку пересечения чевиан обозначим Z):
[pic] ,
а второй раз для треугольника B1BC и секущей AA1:
[pic] .
Перемножив два этих отношения, проведя необходимые сокращения получим соотношение, содержащееся в утверждении теоремы.
Теорема 4. (Обратная теорема Чевы). Если для выбранных на сторонах треугольника ABC или их продолжениях точек A1, В1 и C1 выполняется условие Чевы:
[pic] [pic] ,
то прямые AA1, BB1 и CC1 пересекаются в одной точке.
Доказательство этой теоремы проводится методом от противного, также, как доказательство теоремы Менелая.
Рассмотрим примеры применения прямой и обратной теорем Чевы.
Пример 3. Докажите, что медианы треугольника пересекаются в одной точке.
Решение. Рассмотрим соотношение
[pic]
для вершин треугольника и середин его сторон. Очевидно, что в каждой дроби в числителе и знаменателе стоят равные отрезки, поэтому все эти дроби равны единице. Следовательно, выполнено соотношение Чевы, поэтому, по обратной теореме, медианы пересекаются в одной точке.
Теорема (теорема Чевы). Пусть точки [pic] лежат на сторонах [pic] и [pic] треугольника [pic] соответственно. Пусть отрезки [pic] и [pic] пересекаются в одной точке. Тогда
[pic]
(обходим треугольник по часовой стрелке).
Доказательство. Обозначим через [pic] точку пересечения отрезков [pic] и [pic] . Опустим из точек [pic] и [pic] перпендикуляры на прямую [pic] до пересечения с ней в точках [pic] и [pic] соответственно (см. рисунок).
[link]