Рабочая программа по математике для 6 класса к УМК Виленкин Н.Я.

Автор публикации:

Дата публикации:

Краткое описание: ...


Пояснительная записка

Нормативные документы, в соответствии с которыми разработана рабочая программа:

Федеральный закон от 29.12.2012г. №273-ФЗ «Об образовании в Российской Федерации».

Федеральный государственный образовательный стандарт основного общего образования

Примерные программы основного общего образования. Математика. – (Стандарты второго поколения). – 3-е изд., перераб. – М.: Просвещение, 2014.

«Математика. Сборник программ. 5 – 6 классы». Составитель Т. А. Бурмистрова. –3-е изд. – М.: Просвещение, 2014.

Основная образовательная программа МКОУ «Яблоченская СОШ» на 2015-2020 г.г.


Настоящая рабочая программа разработана в соответствии с основными положениями федерального государственного образовательного стандарта основного общего образования по математике, планируемыми результатами основного общего образования по математике, требованиями Примерной основной образовательной программы и ориентирована на работу по учебно-методическому комплекту:

1. Виленкин, Н. Я. Математика. 6 класс : учеб. для общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. – М. : Мнемозина, 2015.

2. Жохов, В. И. Математика. 5–6 классы. Сборник рабочих программ / авт.-сост. Т. А. Бурмистрова. – М. : Мнемозина, 2012.

3. Жохов, В. И. Преподавание математики в 5 и 6 классах : методические рекомендации для учителя к учебнику Виленкина Н. Я. [и др.] / В. И. Жохов. – М. : Мнемозина, 2012.

4. Жохов, В. И. Математика. 6 класс. Контрольные работы для учащихся / В. И. Жохов, Л. Б. Крайнева. – М. : Мнемозина, 2013.

5. Жохов, В. И. Математический тренажер. 6 класс : пособие для учителей и учащихся / В. И. Жохов, В. Н. Погодин. – М. : Мнемозина, 2013.


Общая характеристика учебного предмета

Цели и задачи курса

Целью изучения курса математики в 6 классе является систематическое развитие понятия числа, выработка умений выполнять устно и письменно арифметические действия над числами, переводить практические задачи на язык математики, подготовка учащихся к изучению систематических курсов алгебры и геометрии.

Теоретический материал курса излагается на наглядно-интуитивном уровне, математические методы и законы формулируются в виде правил.

В ходе изучения курса учащиеся развивают навыки вычислений с натуральными числами, овладевают навыками действий с обыкновенными и десятичными дробями, положительными и отрицательными числами, получают начальные представления об использовании букв для записи выражений и свойств арифметических действий, составлении уравнений, продолжают знакомство с геометрическими понятиями, приобретают навыки построения геометрических фигур и измерения геометрических величин.

Задачи:

овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучении смежных дисциплин;

интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, интуиции, логического мышления, пространственных представлений, способности к преодолению трудностей;

формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов, устойчивого интереса учащихся к предмету;

воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии;

выявление и формирование математических и творческих способностей.

Структура курса

Курс имеет следующую структуру:

Раздел «Числа и вычисления» включает в себя работу с различными терминами, связанными с различными видами чисел и способами их записи: целые, дробные, десятичная дробь, положительные и отрицательные числа и т. д. Эта работа предполагает формирование следующих умений: переходить от одной формы записи чисел к другой (например, представлять десятичную дробь в виде обыкновенной); исследовать ситуацию, требующую сравнения чисел, их упорядочения; понимать связь отношений «больше» и «меньше» с расположением точек на координатной прямой; планировать решение задачи; действовать по заданному и самостоятельно составленному плану решения; составлять и решать пропорции, решать основные задачи на дроби, проценты.

Раздел «Выражения и их преобразования» предусматривает ознакомление с терминами «выражение» и «тождественное преобразование», формирует понимание их в тексте и в речи учителя. Ведется работа по составлению несложных буквенных выражений и формул, осуществляются в выражениях и формулах числовые подстановки и выполнение соответствующих вычислений, начинается формирование умений выражать одну переменную через другую.

В разделе «Уравнения и неравенства» формируется понимание, что уравнение – это математический аппарат решения разнообразных задач из математики, смежных областей знаний, практики. Ведется работа над правильным употреблением терминов «уравнение» и «корень уравнения», решением простейших линейных уравнений и решением текстовых задач с помощью составлений уравнений.

В разделе «Функции» формируется понимание, что функция – это математическая модель, позволяющая описывать и изучать разнообразные зависимости между реальными величинами. Ведется работа по интерпретированию в несложных случаях графиков реальных зависимостей между величинами при помощи ответов на поставленные вопросы.

Раздел «Геометрические фигуры и их свойства. Измерение геометрических величин» включает в себя работу над углублением понимания, что геометрические формы являются идеализированными образами реальных объектов, над приобретением умения использовать геометрический язык для описания предметов окружающего мира, учащиеся получают представление о некоторых областях применения геометрии в быту, науке, технике, искусстве. Эта работа предполагает формирование следующих умений: распознавать на чертежах и моделях геометрические фигуры (отрезки, углы, треугольники, четырехугольники), изображать указанные геометрические фигуры, выполнять чертежи по условию задачи. В этом разделе учащиеся приобретают практические навыки использования геометрических инструментов для изображения фигур, а также для нахождения длин отрезков и величин углов.


Описание места учебного предмета в учебном плане

Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение математики на ступени основного общего образования отводится не менее 875 часов из расчета 5 часов в неделю с 5 по 9 класс. Рабочая программа для 6 класса рассчитана на 5 часов в неделю, общий объем 175 часов.

Основные типы учебных занятий:

  • урок изучения нового учебного материала;

  • урок закрепления и применения знаний;

  • урок обобщающего повторения и систематизации знаний;

  • урок контроля знаний и умений.

Формы организации учебного процесса:

  • индивидуальные,

  • групповые,

  • индивидуально-групповые,

  • фронтальные.



Описание ценностных ориентиров содержания учебного предмета

Многим людям в своей жизни приходится выполнять достаточно сложные расчеты, пользоваться общеупотребительной вычислительной техникой, находить в справочниках и применять нужные формулы, использовать практические приемы геометрических измерений и построений, читать информацию, представленную в виде таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, составлять несложные алгоритмы и др. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие научных знаний, восприятие и интерпретация разнообразной социальной, экономической, политической информации. Таким образом, практическая полезность математики обусловлена тем, что ее предметом являются фундаментальные структуры реального мира: пространственные формы и количественные отношения – от простейших, усваиваемых в непосредственном опыте людей, до достаточно сложных, необходимых для развития научных и технологических идей.

Без базовой математической подготовки невозможно достичь высокого уровня образования, так как все больше специальностей связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, биология, психология и многие другие). Следовательно, расширяется круг школьников, для которых математика становится профессионально значимым предметом.

В современном обществе важным является формирование математического стиля мышления, проявляющегося в определенных умственных навыках. В процессе математической деятельности в арсенал приемов и методов человеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. С помощью объектов математических умозаключений и правил их конструирования вскрывается механизм логических построений, вырабатываются умения формулировать, обосновывать и доказывать суждения, тем самым развивается логическое мышление.

Математике принадлежит ведущая роль в формировании алгоритмического мышления, воспитании умения действовать по заданным алгоритмам и конструировать новые. В ходе решения задач – основной учебной деятельности на уроках математики – развиваются творческая и прикладная стороны мышления.

Использование в математике наряду с естественным нескольких математических языков дает возможность развивать у учащихся точную, экономную и информативную устную и письменную речь, умение отбирать наиболее подходящие языковые (в частности, символические и графические) средства.

Математическое образование вносит свой вклад в формирование общей культуры человека. Ее необходимым компонентом является общее знакомство с методами познаниядействительности, что включает понимание диалектической взаимосвязи математики и действительности, представление о предмете и методе математики, его отличиях от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач.

Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии. Изучение математики развивает воображение, пространственные представления. История развития математического знания дает возможность пополнить запас историко-научных знаний школьников, сформировать у них представления о математике как части общечеловеческой культуры. Знакомство с основными историческими вехами возникновения и развития математической науки, судьбами великих открытий, именами людей, творивших науку, должно войти в интеллектуальный багаж каждого культурного человека.







Содержание учебного предмета

1. Делимость чисел

Делители и кратные числа. Общий делитель и общее кратное. Признаки делимости на 2, 3, 5, 9, 10. Простые и составные числа. Разложение натурального числа на простые множители.

 Основная цельзавершить изучение натуральных чисел, подготовить основу для освоения действий с обыкновенными дробями.

2.Сложение и вычитание дробей с разными знаменателями

Основное свойство дроби. Сокращение дробей. Приведение дробей к общему знаменателю. Понятие о наименьшем общем знаменателе нескольких дробей. Сравнение дробей. Сложение и вычитание дробей. Решение текстовых задач.

Основная цельвыработать прочные навыки преобразования дробей, сложения и вычитания дробей.

3. Умножение и деление обыкновенных дробей

Умножение и деление обыкновенных дробей. Основные задачи на дроби.

Основная цельвыработать прочные навыки арифметических действий с обыкновенными дробями и решения основных задач на дроби

4. Отношения и пропорции

Пропорция. Основное свойство пропорции. Решение задач с помощью пропорции. Понятие о прямой и обратной пропорциональности величин. Задачи на пропорции. Масштаб. Формулы длины окружности и площади круга. Шар.

Основная цельсформировать понятия пропорции, прямой и обратной пропорциональности величин.

5. Положительные и отрицательные числа

Положительные и отрицательные числа. Противоположные числа. Модуль числа и его геометрический смысл. Сравнение чисел. Целые числа. Изображение чисел на координатной прямой. Координата точки.

Основная цельрасширить представления учащихся о числе путем введения отрицательных чисел.

 6. Сложение и вычитание положительных и отрицательных чисел

Сложение и вычитание положительных и отрицательных чисел.

Основная цельвыработать прочные навыки сложения и вычитания положительных и отрицательных чисел.

7. Умножение и деление положительных и отрицательных чисел

Умножение десятичных положительных и отрицательных чисел. Понятие о рациональном числе. Десятичное приближение обыкновенной дроби. Применение законов арифметических действий для рационализации вычислений.

Основная цельвыработать прочные навыки арифметических действий с положительными и отрицательными числами.

8. Решение уравнений

Простейшие преобразования выражений: раскрытие скобок, приведение подобных слагаемых. Решение линейных уравнений. Примеры решения текстовых задач с помощью линейных уравнений.

Основная цельподготовить учащихся к выполнению преобразований выражений, решению уравнений.

9. Координаты на плоскости

Построение перпендикуляра к прямой и параллельных прямых с помощью чертежного треугольника и линейки. Прямоугольная система координат на плоскости, абсцисса и ордината точки. Примеры графиков и диаграмм.

Основная цельпознакомить учащихся с прямоугольной системой координат на плоскости.





Планируемые результаты изучения учебного предмета

Изучение математики в основной школе дает возможность учащимся достичь следующих результатов развития:

Личностные результаты:

У обучающегося будут сформированы:

  • внутренняя позиция школьника на уровне положительного отношения к урокам математики;

  • понимание роли математических действий в жизни человека;

  • интерес к различным видам учебной деятельности, включая элементы предметно-исследовательской деятельности;

  • ориентация на понимание предложений и оценок учителей и одноклассников;

  • понимание причин успеха в учебе;

  • понимание нравственного содержания поступков окружающих людей.

Обучающийся получит возможность для формирования:

  • интереса к познанию математических фактов, количественных отношений, математических зависимостей в окружающем мире;

  • ориентации на оценку результатов познавательной деятельности;

  • общих представлений о рациональной организации мыслительной деятельности;

  • самооценки на основе заданных критериев успешности учебной деятельности;

  • первоначальной ориентации в поведении на принятые моральные нормы;

  • понимания чувств одноклассников, учителей;

  • представления о значении математики для познания окружающего мира.


Метапредметные результаты:

Регулятивные:

Ученик научится:

  • принимать учебную задачу и следовать инструкции учителя;

  • планировать свои действия в соответствии с учебными задачами и инструкцией учителя;

  • выполнять действия в устной форме;

  • учитывать выделенные учителем ориентиры действия в учебном материале;

  • в сотрудничестве с учителем находить несколько вариантов решения учебной задачи, представленной на наглядно-образном уровне;

  • вносить необходимые коррективы в действия на основе принятых правил;

  • выполнять учебные действия в устной и письменной речи;

  • принимать установленные правила в планировании и контроле способа решения;

  • осуществлять пошаговый контроль под руководством учителя в доступных видах учебно-познавательной деятельности.

Ученик получит возможность научиться:

  • понимать смысл инструкции учителя и заданий, предложенных в учебнике;

  • выполнять действия в опоре на заданный ориентир;

  • воспринимать мнение и предложения (о способе решения задачи) сверстников;

  • в сотрудничестве с учителем, классом находить несколько вариантов решения учебной задачи;

  • на основе вариантов решения практических задач под руководством учителя делать выводы о свойствах изучаемых объектов;

  • выполнять учебные действия в устной, письменной речи и во внутреннем плане;

  • самостоятельно оценивать правильность выполнения действия и вносить необходимые коррективы в действия с наглядно-образным материалом.

Познавательные:

Ученик научится:

  • осуществлять поиск нужной информации, используя материал учебника и сведения, полученные от взрослых;

  • использовать рисуночные и символические варианты математической записи; кодировать информацию в знаково-символической форме;

  • на основе кодирования строить несложные модели математических понятий, задачных ситуаций;

  • строить небольшие математические сообщения в устной форме;

  • проводить сравнение (по одному или нескольким основаниям, наглядное и по представлению, сопоставление и противопоставление), понимать выводы, сделанные на основе сравнения;

  • выделять в явлениях существенные и несущественные, необходимые и достаточные признаки;

  • проводить аналогию и на ее основе строить выводы;

  • в сотрудничестве с учителем проводить классификацию изучаемых объектов;

  • строить простые индуктивные и дедуктивные рассуждения.

Ученик получит возможность научиться:

  • под руководством учителя осуществлять поиск необходимой и дополнительной информации;

  • работать с дополнительными текстами и заданиями;

  • соотносить содержание схематических изображений с математической записью;

  • моделировать задачи на основе анализа жизненных сюжетов;

  • устанавливать аналогии; формулировать выводы на основе аналогии, сравнения, обобщения;

  • строить рассуждения о математических явлениях;

  • пользоваться эвристическими приемами для нахождения решения математических задач.

Коммуникативные:

Ученик научится:

  • принимать активное участие в работе парами и группами, используя речевые коммуникативные средства;

  • допускать существование различных точек зрения;

  • стремиться к координации различных мнений о математических явлениях в сотрудничестве; договариваться, приходить к общему решению;

  • использовать в общении правила вежливости;

  • использовать простые речевые средства для передачи своего мнения;

  • контролировать свои действия в коллективной работе;

  • понимать содержание вопросов и воспроизводить вопросы;

  • следить за действиями других участников в процессе коллективной познавательной деятельности.

Ученик получит возможность научиться:

  • строить понятные для партнера высказывания и аргументировать свою позицию;

  • использовать средства устного общения для решения коммуникативных задач.

  • корректно формулировать свою точку зрения;

  • проявлять инициативу в учебно-познавательной деятельности;

  • контролировать свои действия в коллективной работе; осуществлять взаимный контроль.

Предметные результаты:

Натуральные числа. Дроби. Рациональные числа.

Ученик научится:

    • понимать особенности десятичной системы счисления;

    •  сравнивать и упорядочивать натуральные числа;

    •  выполнять вычисления с натуральными числами, сочетая устные и письменные приёмы вычислений, применение калькулятора;

    •  использовать понятия и умения, связанные процентами, в ходе решения математических задач, выполнять несложные практические расчёты.

Ученик получит возможность:

  • познакомиться с позиционными системами счисления с основаниями, отличными от 10;

  •  углубить и развить представления о натуральных числах;

  • научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.

Измерения, приближения, оценки

Ученик научится:

  • использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.

Ученик получит возможность:

    • понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения.

Уравнения

Ученик научится:

    • решать простейшие уравнения с одной переменной;

    • понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;

Ученик получит возможность:

    • овладеть специальными приёмами решения уравнений;

    • уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;

Неравенства

Ученик научится:

    • понимать и применять терминологию и символику, связанные с отношением неравенства;

    • применять аппарат неравенств, для решения задач.

Ученик получит возможность научиться:

  • уверенно применять аппарат неравенств, для решения разнообразных математических задач и задач из смежных предметов, практики;

Описательная статистика.

Ученик научится использовать простейшие способы представления и анализа статистических данных.

Ученик получит возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, представлять результаты опроса в виде таблицы, диаграммы.

Комбинаторика

Ученик научится решать комбинаторные задачи на нахождение числа объектов или комбинаций.

Ученик получит возможность научиться некоторым специальным приёмам решения комбинаторных задач.

Наглядная геометрия

Ученик научится:

    • распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;

    • распознавать развёртки куба, прямоугольного параллелепипеда;

    • строить развёртки куба и прямоугольного параллелепипеда;

    • вычислять объём прямоугольного параллелепипеда.

Ученик получит возможность:

  • научиться вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;

  • углубить и развить представления о пространственных геометрических фигурах.

Геометрические фигуры

Ученик научится:

    • пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;

    • распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;

    • находить значения длин линейных фигур, градусную меру углов от 0 до 180°;

    • решать несложные задачи на построение.

Ученик получит возможность:

  • научится пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;

  • распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;

  • находить значения длин линейных фигур, градусную меру углов от 0 до 180°;

  • решать несложные задачи на построение.

Измерение геометрических величин

Ученик научится:

    • использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, градусной меры угла;

    • вычислять площади прямоугольника, квадрата;

    • вычислять длины линейных элементов фигур и их углы, формулы площадей фигур;

    • решать задачи на применение формулы площади прямоугольника, квадрата.

Ученик получит возможность научиться:

  • использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, градусной меры угла;

  • вычислять площади прямоугольника, квадрата;

  • вычислять длины линейных элементов фигур и их углы, формулы площадей фигур;

  • решать задачи на применение формулы площади прямоугольника, квадрата.

Координаты

Ученик научится:

    • находить координаты точки на луче.

Ученик получит возможность:

  • овладеть координатным методом решения задач.

Работа с информацией

Ученик научится:

    • заполнять простейшие таблицы по результатам выполнения практической работы, по рисунку;

    • выполнять действия по алгоритму;

    • читать простейшие круговые диаграммы.

Ученик получит возможность научиться:

  • устанавливать закономерность расположения данных в строках и столбцах таблицы, заполнять таблицу в соответствии с установленной закономерностью;

  • понимать информацию, заключенную в таблице, схеме, диаграмме и представлять ее в виде текста (устного или письменного), числового выражения, уравнения;

  • выполнять задания в тестовой форме с выбором ответа;

  • выполнять действия по алгоритму; проверять правильность готового алгоритма, дополнять незавершенный алгоритм;

  • строить простейшие высказывания с использованием логических связок «верно /неверно, что ...»;

  • составлять схему рассуждений в текстовой задаче от вопроса.


Описание материально-технического обеспечения
образовательного процесса

  1. Примерная программа «Стандарты второго поколения. Математика 5 – 9 класс» – М.: Просвещение, 2014 г.

2. «Математика. Сборник рабочих программ 5 – 6 классы», - М.Просвещение, 2014. Составитель Т. А. Бурмистрова.

  1. Математика 5. Учебник для общеобразовательных учреждений. Авторы: Н.Я. Виленкин, В.И. Жохов, А.С.Чесноков, С.И. Шварцбурд , издательство "Мнемозина", г. Москва 2015

  2. Чесноков, А. С. Дидактические материалы по математике для 6 класса / А. С. Чесноков, К. И. Нешков. – М. : Классикс Стиль, 2014.

  3. Шарыгин, И. Ф. Задачи на смекалку. 5–6 классы : пособие для учащихся общеобразоват. учреждений / И. Ф. Шарыгин, А. В. Шевкин. – М. : Просвещение, 2010.

  4. Я иду на урок математики : 5 класс : книга для учителя / сост. И. Л. Соловейчик. – М. : Первое сентября, 2010. – (Библиотека «Первого сентября).

Интернет-ресурсы:

1) Я иду на урок математики (методические разработки) : www.festival. 1september.ru

2) Уроки, конспекты.: www.pedsovet.ru