Пояснительная записка
Нормативные документы, в соответствии с которыми разработана рабочая программа:
Федеральный закон от 29.12.2012г. №273-ФЗ «Об образовании в Российской Федерации».
Федеральный государственный образовательный стандарт основного общего образования
Примерные программы основного общего образования. Математика. – (Стандарты второго поколения). – 3-е изд., перераб. – М.: Просвещение, 2014.
«Математика. Сборник программ. 5 – 6 классы». Составитель Т. А. Бурмистрова. –3-е изд. – М.: Просвещение, 2014.
Основная образовательная программа МКОУ «Яблоченская СОШ» на 2015-2020 г.г.
Настоящая рабочая программа разработана в соответствии с основными положениями федерального государственного образовательного стандарта основного общего образования по математике, планируемыми результатами основного общего образования по математике, требованиями Примерной основной образовательной программы и ориентирована на работу по учебно-методическому комплекту:
1. Виленкин, Н. Я. Математика. 6 класс : учеб. для общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. – М. : Мнемозина, 2015.
2. Жохов, В. И. Математика. 5–6 классы. Сборник рабочих программ / авт.-сост. Т. А. Бурмистрова. – М. : Мнемозина, 2012.
3. Жохов, В. И. Преподавание математики в 5 и 6 классах : методические рекомендации для учителя к учебнику Виленкина Н. Я. [и др.] / В. И. Жохов. – М. : Мнемозина, 2012.
4. Жохов, В. И. Математика. 6 класс. Контрольные работы для учащихся / В. И. Жохов, Л. Б. Крайнева. – М. : Мнемозина, 2013.
5. Жохов, В. И. Математический тренажер. 6 класс : пособие для учителей и учащихся / В. И. Жохов, В. Н. Погодин. – М. : Мнемозина, 2013.
Общая характеристика учебного предмета
Цели и задачи курса
Целью изучения курса математики в 6 классе является систематическое развитие понятия числа, выработка умений выполнять устно и письменно арифметические действия над числами, переводить практические задачи на язык математики, подготовка учащихся к изучению систематических курсов алгебры и геометрии.
Теоретический материал курса излагается на наглядно-интуитивном уровне, математические методы и законы формулируются в виде правил.
В ходе изучения курса учащиеся развивают навыки вычислений с натуральными числами, овладевают навыками действий с обыкновенными и десятичными дробями, положительными и отрицательными числами, получают начальные представления об использовании букв для записи выражений и свойств арифметических действий, составлении уравнений, продолжают знакомство с геометрическими понятиями, приобретают навыки построения геометрических фигур и измерения геометрических величин.
Задачи:
• овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучении смежных дисциплин;
• интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, интуиции, логического мышления, пространственных представлений, способности к преодолению трудностей;
• формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов, устойчивого интереса учащихся к предмету;
• воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии;
• выявление и формирование математических и творческих способностей.
Структура курса
Курс имеет следующую структуру:
Раздел «Числа и вычисления» включает в себя работу с различными терминами, связанными с различными видами чисел и способами их записи: целые, дробные, десятичная дробь, положительные и отрицательные числа и т. д. Эта работа предполагает формирование следующих умений: переходить от одной формы записи чисел к другой (например, представлять десятичную дробь в виде обыкновенной); исследовать ситуацию, требующую сравнения чисел, их упорядочения; понимать связь отношений «больше» и «меньше» с расположением точек на координатной прямой; планировать решение задачи; действовать по заданному и самостоятельно составленному плану решения; составлять и решать пропорции, решать основные задачи на дроби, проценты.
Раздел «Выражения и их преобразования» предусматривает ознакомление с терминами «выражение» и «тождественное преобразование», формирует понимание их в тексте и в речи учителя. Ведется работа по составлению несложных буквенных выражений и формул, осуществляются в выражениях и формулах числовые подстановки и выполнение соответствующих вычислений, начинается формирование умений выражать одну переменную через другую.
В разделе «Уравнения и неравенства» формируется понимание, что уравнение – это математический аппарат решения разнообразных задач из математики, смежных областей знаний, практики. Ведется работа над правильным употреблением терминов «уравнение» и «корень уравнения», решением простейших линейных уравнений и решением текстовых задач с помощью составлений уравнений.
В разделе «Функции» формируется понимание, что функция – это математическая модель, позволяющая описывать и изучать разнообразные зависимости между реальными величинами. Ведется работа по интерпретированию в несложных случаях графиков реальных зависимостей между величинами при помощи ответов на поставленные вопросы.
Раздел «Геометрические фигуры и их свойства. Измерение геометрических величин» включает в себя работу над углублением понимания, что геометрические формы являются идеализированными образами реальных объектов, над приобретением умения использовать геометрический язык для описания предметов окружающего мира, учащиеся получают представление о некоторых областях применения геометрии в быту, науке, технике, искусстве. Эта работа предполагает формирование следующих умений: распознавать на чертежах и моделях геометрические фигуры (отрезки, углы, треугольники, четырехугольники), изображать указанные геометрические фигуры, выполнять чертежи по условию задачи. В этом разделе учащиеся приобретают практические навыки использования геометрических инструментов для изображения фигур, а также для нахождения длин отрезков и величин углов.
Описание места учебного предмета в учебном плане
Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение математики на ступени основного общего образования отводится не менее 875 часов из расчета 5 часов в неделю с 5 по 9 класс. Рабочая программа для 6 класса рассчитана на 5 часов в неделю, общий объем 175 часов.
Основные типы учебных занятий:
урок изучения нового учебного материала;
урок закрепления и применения знаний;
урок обобщающего повторения и систематизации знаний;
урок контроля знаний и умений.
Формы организации учебного процесса:
индивидуальные,
групповые,
индивидуально-групповые,
фронтальные.
Описание ценностных ориентиров содержания учебного предмета
Многим людям в своей жизни приходится выполнять достаточно сложные расчеты, пользоваться общеупотребительной вычислительной техникой, находить в справочниках и применять нужные формулы, использовать практические приемы геометрических измерений и построений, читать информацию, представленную в виде таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, составлять несложные алгоритмы и др. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие научных знаний, восприятие и интерпретация разнообразной социальной, экономической, политической информации. Таким образом, практическая полезность математики обусловлена тем, что ее предметом являются фундаментальные структуры реального мира: пространственные формы и количественные отношения – от простейших, усваиваемых в непосредственном опыте людей, до достаточно сложных, необходимых для развития научных и технологических идей.
Без базовой математической подготовки невозможно достичь высокого уровня образования, так как все больше специальностей связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, биология, психология и многие другие). Следовательно, расширяется круг школьников, для которых математика становится профессионально значимым предметом.
В современном обществе важным является формирование математического стиля мышления, проявляющегося в определенных умственных навыках. В процессе математической деятельности в арсенал приемов и методов человеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. С помощью объектов математических умозаключений и правил их конструирования вскрывается механизм логических построений, вырабатываются умения формулировать, обосновывать и доказывать суждения, тем самым развивается логическое мышление.
Математике принадлежит ведущая роль в формировании алгоритмического мышления, воспитании умения действовать по заданным алгоритмам и конструировать новые. В ходе решения задач – основной учебной деятельности на уроках математики – развиваются творческая и прикладная стороны мышления.
Использование в математике наряду с естественным нескольких математических языков дает возможность развивать у учащихся точную, экономную и информативную устную и письменную речь, умение отбирать наиболее подходящие языковые (в частности, символические и графические) средства.
Математическое образование вносит свой вклад в формирование общей культуры человека. Ее необходимым компонентом является общее знакомство с методами познаниядействительности, что включает понимание диалектической взаимосвязи математики и действительности, представление о предмете и методе математики, его отличиях от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач.
Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии. Изучение математики развивает воображение, пространственные представления. История развития математического знания дает возможность пополнить запас историко-научных знаний школьников, сформировать у них представления о математике как части общечеловеческой культуры. Знакомство с основными историческими вехами возникновения и развития математической науки, судьбами великих открытий, именами людей, творивших науку, должно войти в интеллектуальный багаж каждого культурного человека.
Содержание учебного предмета
1. Делимость чисел
Делители и кратные числа. Общий делитель и общее кратное. Признаки делимости на 2, 3, 5, 9, 10. Простые и составные числа. Разложение натурального числа на простые множители.
Основная цель – завершить изучение натуральных чисел, подготовить основу для освоения действий с обыкновенными дробями.
2.Сложение и вычитание дробей с разными знаменателями
Основное свойство дроби. Сокращение дробей. Приведение дробей к общему знаменателю. Понятие о наименьшем общем знаменателе нескольких дробей. Сравнение дробей. Сложение и вычитание дробей. Решение текстовых задач.
Основная цель – выработать прочные навыки преобразования дробей, сложения и вычитания дробей.
3. Умножение и деление обыкновенных дробей
Умножение и деление обыкновенных дробей. Основные задачи на дроби.
Основная цель – выработать прочные навыки арифметических действий с обыкновенными дробями и решения основных задач на дроби
4. Отношения и пропорции
Пропорция. Основное свойство пропорции. Решение задач с помощью пропорции. Понятие о прямой и обратной пропорциональности величин. Задачи на пропорции. Масштаб. Формулы длины окружности и площади круга. Шар.
Основная цель – сформировать понятия пропорции, прямой и обратной пропорциональности величин.
5. Положительные и отрицательные числа
Положительные и отрицательные числа. Противоположные числа. Модуль числа и его геометрический смысл. Сравнение чисел. Целые числа. Изображение чисел на координатной прямой. Координата точки.
Основная цель – расширить представления учащихся о числе путем введения отрицательных чисел.
6. Сложение и вычитание положительных и отрицательных чисел
Сложение и вычитание положительных и отрицательных чисел.
Основная цель – выработать прочные навыки сложения и вычитания положительных и отрицательных чисел.
7. Умножение и деление положительных и отрицательных чисел
Умножение десятичных положительных и отрицательных чисел. Понятие о рациональном числе. Десятичное приближение обыкновенной дроби. Применение законов арифметических действий для рационализации вычислений.
Основная цель – выработать прочные навыки арифметических действий с положительными и отрицательными числами.
8. Решение уравнений
Простейшие преобразования выражений: раскрытие скобок, приведение подобных слагаемых. Решение линейных уравнений. Примеры решения текстовых задач с помощью линейных уравнений.
Основная цель – подготовить учащихся к выполнению преобразований выражений, решению уравнений.
9. Координаты на плоскости
Построение перпендикуляра к прямой и параллельных прямых с помощью чертежного треугольника и линейки. Прямоугольная система координат на плоскости, абсцисса и ордината точки. Примеры графиков и диаграмм.
Основная цель – познакомить учащихся с прямоугольной системой координат на плоскости.
Планируемые результаты изучения учебного предмета
Изучение математики в основной школе дает возможность учащимся достичь следующих результатов развития:
Личностные результаты:
У обучающегося будут сформированы:
внутренняя позиция школьника на уровне положительного отношения к урокам математики;
понимание роли математических действий в жизни человека;
интерес к различным видам учебной деятельности, включая элементы предметно-исследовательской деятельности;
ориентация на понимание предложений и оценок учителей и одноклассников;
понимание причин успеха в учебе;
понимание нравственного содержания поступков окружающих людей.
Обучающийся получит возможность для формирования:
интереса к познанию математических фактов, количественных отношений, математических зависимостей в окружающем мире;
ориентации на оценку результатов познавательной деятельности;
общих представлений о рациональной организации мыслительной деятельности;
самооценки на основе заданных критериев успешности учебной деятельности;
первоначальной ориентации в поведении на принятые моральные нормы;
понимания чувств одноклассников, учителей;
представления о значении математики для познания окружающего мира.
Метапредметные результаты:
Регулятивные:
Ученик научится:
принимать учебную задачу и следовать инструкции учителя;
планировать свои действия в соответствии с учебными задачами и инструкцией учителя;
выполнять действия в устной форме;
учитывать выделенные учителем ориентиры действия в учебном материале;
в сотрудничестве с учителем находить несколько вариантов решения учебной задачи, представленной на наглядно-образном уровне;
вносить необходимые коррективы в действия на основе принятых правил;
выполнять учебные действия в устной и письменной речи;
принимать установленные правила в планировании и контроле способа решения;
осуществлять пошаговый контроль под руководством учителя в доступных видах учебно-познавательной деятельности.
Ученик получит возможность научиться:
понимать смысл инструкции учителя и заданий, предложенных в учебнике;
выполнять действия в опоре на заданный ориентир;
воспринимать мнение и предложения (о способе решения задачи) сверстников;
в сотрудничестве с учителем, классом находить несколько вариантов решения учебной задачи;
на основе вариантов решения практических задач под руководством учителя делать выводы о свойствах изучаемых объектов;
выполнять учебные действия в устной, письменной речи и во внутреннем плане;
самостоятельно оценивать правильность выполнения действия и вносить необходимые коррективы в действия с наглядно-образным материалом.
Познавательные:
Ученик научится:
использовать рисуночные и символические варианты математической записи; кодировать информацию в знаково-символической форме;
на основе кодирования строить несложные модели математических понятий, задачных ситуаций;
строить небольшие математические сообщения в устной форме;
проводить сравнение (по одному или нескольким основаниям, наглядное и по представлению, сопоставление и противопоставление), понимать выводы, сделанные на основе сравнения;
выделять в явлениях существенные и несущественные, необходимые и достаточные признаки;
проводить аналогию и на ее основе строить выводы;
в сотрудничестве с учителем проводить классификацию изучаемых объектов;
строить простые индуктивные и дедуктивные рассуждения.
Ученик получит возможность научиться:
под руководством учителя осуществлять поиск необходимой и дополнительной информации;
работать с дополнительными текстами и заданиями;
соотносить содержание схематических изображений с математической записью;
моделировать задачи на основе анализа жизненных сюжетов;
устанавливать аналогии; формулировать выводы на основе аналогии, сравнения, обобщения;
строить рассуждения о математических явлениях;
пользоваться эвристическими приемами для нахождения решения математических задач.
Коммуникативные:
Ученик научится:
принимать активное участие в работе парами и группами, используя речевые коммуникативные средства;
допускать существование различных точек зрения;
стремиться к координации различных мнений о математических явлениях в сотрудничестве; договариваться, приходить к общему решению;
использовать в общении правила вежливости;
использовать простые речевые средства для передачи своего мнения;
контролировать свои действия в коллективной работе;
понимать содержание вопросов и воспроизводить вопросы;
следить за действиями других участников в процессе коллективной познавательной деятельности.
Ученик получит возможность научиться:
строить понятные для партнера высказывания и аргументировать свою позицию;
использовать средства устного общения для решения коммуникативных задач.
корректно формулировать свою точку зрения;
проявлять инициативу в учебно-познавательной деятельности;
контролировать свои действия в коллективной работе; осуществлять взаимный контроль.
Предметные результаты:
Натуральные числа. Дроби. Рациональные числа.
Ученик научится:
понимать особенности десятичной системы счисления;
сравнивать и упорядочивать натуральные числа;
выполнять вычисления с натуральными числами, сочетая устные и письменные приёмы вычислений, применение калькулятора;
использовать понятия и умения, связанные процентами, в ходе решения математических задач, выполнять несложные практические расчёты.
Ученик получит возможность:
познакомиться с позиционными системами счисления с основаниями, отличными от 10;
углубить и развить представления о натуральных числах;
научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.
Измерения, приближения, оценки
Ученик научится:
Ученик получит возможность:
понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения.
Уравнения
Ученик научится:
решать простейшие уравнения с одной переменной;
понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;
Ученик получит возможность:
овладеть специальными приёмами решения уравнений;
уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;
Неравенства
Ученик научится:
понимать и применять терминологию и символику, связанные с отношением неравенства;
применять аппарат неравенств, для решения задач.
Ученик получит возможность научиться:
Описательная статистика.
Ученик научится использовать простейшие способы представления и анализа статистических данных.
Ученик получит возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, представлять результаты опроса в виде таблицы, диаграммы.
Комбинаторика
Ученик научится решать комбинаторные задачи на нахождение числа объектов или комбинаций.
Ученик получит возможность научиться некоторым специальным приёмам решения комбинаторных задач.
Наглядная геометрия
Ученик научится:
распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;
распознавать развёртки куба, прямоугольного параллелепипеда;
строить развёртки куба и прямоугольного параллелепипеда;
вычислять объём прямоугольного параллелепипеда.
Ученик получит возможность:
научиться вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;
углубить и развить представления о пространственных геометрических фигурах.
Геометрические фигуры
Ученик научится:
пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;
распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;
находить значения длин линейных фигур, градусную меру углов от 0 до 180°;
решать несложные задачи на построение.
Ученик получит возможность:
находить значения длин линейных фигур, градусную меру углов от 0 до 180°;
решать несложные задачи на построение.
Измерение геометрических величин
Ученик научится:
использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, градусной меры угла;
вычислять площади прямоугольника, квадрата;
вычислять длины линейных элементов фигур и их углы, формулы площадей фигур;
решать задачи на применение формулы площади прямоугольника, квадрата.
Ученик получит возможность научиться:
использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, градусной меры угла;
вычислять площади прямоугольника, квадрата;
вычислять длины линейных элементов фигур и их углы, формулы площадей фигур;
решать задачи на применение формулы площади прямоугольника, квадрата.
Координаты
Ученик научится:
Ученик получит возможность:
Работа с информацией
Ученик научится:
заполнять простейшие таблицы по результатам выполнения практической работы, по рисунку;
выполнять действия по алгоритму;
читать простейшие круговые диаграммы.
Ученик получит возможность научиться:
устанавливать закономерность расположения данных в строках и столбцах таблицы, заполнять таблицу в соответствии с установленной закономерностью;
понимать информацию, заключенную в таблице, схеме, диаграмме и представлять ее в виде текста (устного или письменного), числового выражения, уравнения;
выполнять задания в тестовой форме с выбором ответа;
выполнять действия по алгоритму; проверять правильность готового алгоритма, дополнять незавершенный алгоритм;
строить простейшие высказывания с использованием логических связок «верно /неверно, что ...»;
составлять схему рассуждений в текстовой задаче от вопроса.
Описание материально-технического обеспечения
образовательного процесса
Примерная программа «Стандарты второго поколения. Математика 5 – 9 класс» – М.: Просвещение, 2014 г.
2. «Математика. Сборник рабочих программ 5 – 6 классы», - М.Просвещение, 2014. Составитель Т. А. Бурмистрова.
Математика 5. Учебник для общеобразовательных учреждений. Авторы: Н.Я. Виленкин, В.И. Жохов, А.С.Чесноков, С.И. Шварцбурд , издательство "Мнемозина", г. Москва 2015
Чесноков, А. С. Дидактические материалы по математике для 6 класса / А. С. Чесноков, К. И. Нешков. – М. : Классикс Стиль, 2014.
Шарыгин, И. Ф. Задачи на смекалку. 5–6 классы : пособие для учащихся общеобразоват. учреждений / И. Ф. Шарыгин, А. В. Шевкин. – М. : Просвещение, 2010.
Я иду на урок математики : 5 класс : книга для учителя / сост. И. Л. Соловейчик. – М. : Первое сентября, 2010. – (Библиотека «Первого сентября).
Интернет-ресурсы:
1) Я иду на урок математики (методические разработки) : www.festival. 1september.ru
2) Уроки, конспекты.: www.pedsovet.ru