Пояснительная записка
Рабочая программа по геометрии составлена на основе федерального компонента государственного стандарта основного общего образования.
Данная рабочая программа ориентирована на учащихся 10классов и на его изучение отводится 3 часа в неделю в соответствии с учебным планом МКОУ СОШ №3 г.п. Нарткала
Содержание курса
Прямые и плоскости в пространстве. Основные понятия стереометрии (точка, прямая, плоскость, пространство).
Пересекающиеся, параллельные и скрещивающиеся прямые. Угол между прямыми в пространстве. Перпендикулярность прямых. Параллельность и перпендикулярность прямой и плоскости, признаки и свойства. Теорема о трех перпендикулярах. Перпендикуляр и наклонная. Угол между прямой и плоскостью.
Параллельность плоскостей, перпендикулярность плоскостей, признаки и свойства. Двугранный угол, линейный угол двугранного угла.
Расстояния от точки до плоскости. Расстояние от прямой до плоскости. Расстояние между параллельными плоскостями. Расстояние между скрещивающимися прямыми.
Параллельное проектирование. Площадь ортогональной проекции многоугольника. Изображение пространственных фигур.
Многогранники. Вершины, ребра, грани многогранника. Развертка. Многогранные углы. Выпуклые многогранники. Теорема Эйлера.
Призма, ее основания, боковые ребра, высота, боковая поверхность. Прямая и наклонная призма. Правильная призма. Параллелепипед. Куб.
Пирамида, ее основание, боковые ребра, высота, боковая поверхность. Треугольная пирамида. Правильная пирамида. Усеченная пирамида.
Симметрии в кубе, в параллелепипеде, в призме и пирамиде. Понятие о симметрии в пространстве (центральная, осевая, зеркальная). Примеры симметрий в окружающем мире.
Сечения куба, призмы, пирамиды.
Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).
Тела и поверхности вращения. Цилиндр и конус. Усеченный конус. Основание, высота, боковая поверхность, образующая, развертка. Осевые сечения и сечения параллельные основанию.
Шар и сфера, их сечения, касательная плоскость к сфере.
Объемы тел и площади их поверхностей. Понятие об объеме тела. Отношение объемов подобных тел.
Формулы объема куба, прямоугольного параллелепипеда, призмы, цилиндра. Формулы объема пирамиды и конуса. Формулы площади поверхностей цилиндра и конуса. Формулы объема шара и площади сферы.
Координаты и векторы. Декартовы координаты в пространстве. Формула расстояния между двумя точками. Уравнения сферы и плоскости. Формула расстояния от точки до плоскости.
Векторы. Модуль вектора. Равенство векторов. Сложение векторов и умножение вектора на число. Угол между векторами. Координаты вектора. Скалярное произведение векторов. Коллинеарные векторы. Разложение вектора по двум неколлинеарным векторам. Компланарные векторы. Разложение по трем некомпланарным векторам
Требования к результатам обучения
и освоению содержания курса
Знать:
Аксиомы о взаимном расположении точек, прямых и плоскостей в пространстве и их следствия. Виды расположения прямых в пространстве. Понятие параллельных и скрещивающихся прямых. Теоремы о параллельности прямых и параллельности 3-х прямых. Расположение в пространстве прямой и плоскости. Понятие параллельности прямой и плоскости ( признак параллельности прямой и плоскости). Понятие скрещивающиеся прямых. Теорему о равенстве углов с сонаправленными сторонами. Понятие параллельных плоскостей. Признак параллельности двух плоскостей. Свойства параллельных плоскостей. Понятие тетраэдра. Понятие параллелепипеда и его свойства. Способы построения сечений тетраэдра и параллелепипеда. Понятие перпендикулярных прямых. Лемму перпендикулярности двух параллельных прямых к третей. Определение перпендикулярности прямой и плоскости. Связь между параллельностью прямых и их перпендикулярностью к плоскости. Признак перпендикулярности прямой и плоскости. Понятие расстояние от точки до прямой. Теорему о трех перпендикулярах. Понятие угла между прямой и плоскостью. Понятие двугранного угла и его линейного угла. Понятие угла между плоскостями. Определение перпендикулярных плоскостей. Признак перпендикулярности двух плоскостей. Понятие прямоугольного параллелепипеда, свойства его граней, диагоналей двугранных углов. Понятие многогранника, призмы и их элементов. Виды призм. Понятие площади поверхности призмы. Формулу для вычисления площади поверхности призмы. Понятие пирамиды. Понятие правильной пирамиды. Теорему о площади боковой поверхности правильной пирамиды. Теоретический материал курса 10класса. Основные теоретические факты. Наиболее распространенные приемы решения задач
Уметь:
Находить угол между прямыми в пространстве. Применять полученные знания при решении задач. Применять аксиомы стереометрии и их следствия при решении задач. Рассматривать понятие взаимного расположения прямых , прямой и плоскости на моделях куба, призмы, пирамиды. Применять изученные теоремы к решению задач. Самостоятельно выбрать способ решения задач. Доказывать признак параллельности двух плоскостей и применять его при решении задач. Использовать свойства параллельных плоскостей при решении задач. Работать с чертежом и читать его. Решать задачи, связанные с тетраэдром. Решать задачи на применение свойств параллелепипеда. Строить сечение тетраэдра и параллелепипеда. Доказывать Лемму перпендикулярности двух параллельных прямых к третьей. Применять признак перпендикулярности прямой и плоскости к решению задач. Находить связь между параллельностью прямых и их перпендикулярностью к плоскости. Решать основные типы задач на перпендикулярность прямой и плоскости. Доказывать теорему о трех перпендикулярах и использовать ее при решении задач. Находить угол между прямой и плоскостью. Определять угол между плоскостями. Применять признак перпендикулярности двух плоскостей при решении задач, работать с чертежом и читать его. Использовать свойства прямоугольного параллелепипеда при решении задач. Работать с чертежом и читать его. Различать виды призм . Давать описание многогранников. Выводить формулу, для вычисления площади поверхности призмы. Работать с чертежом и читать его. Отличать виды пирамид. Доказывать теорему о площади боковой поверхности правильной пирамиды . Решать задачи на нахождение площади боковой поверхности правильной пирамиды. Практически применять теоретический материал. Совершенствовать умения и навыки решения задач.
Календарно-тематическое планирование