Рабочая программа по математике 5-9 класс

Автор публикации:

Дата публикации:

Краткое описание: ...


Пояснительная записка



Структура программы

  1. Пояснительная записка, в которой конкретизируются общие цели основного общего образования по математике, даётся характеристика учебного курса, его место в учебном плане, приводятся личностные, метапредметные и предметные результаты освоения учебного курса, планируемые результаты изучения учебного курса.

  2. Содержание курса математики 5-9 классов.

  3. Примерное тематическое планирование с определением основных видов учебной деятельности учащимися.

  4. Учебно-методическое и информационное оснащение образовательного процесса.



Общая характеристика программы

Программа по математике составлена на основе Фундаментального ядра содержания общего образования, требований к результатам освоения образовательной программы основного общего образования, представленных в федеральном государственном стандарте основного общего образования с учётом преемственности с примерными программами для начального общего образования по математике. В ней также учитываются доминирующие идеи и положения Программы развития и формирования универсальных учебных действий для основного общего образования, которые обеспечивают формирование российской гражданской идентичности, коммуникативных качеств личности и способствуют формированию ключевой компетенции - умения учиться.

Курс математики 5-6 классов является фундаментом для математического образования и развития школьников, доминирующей функцией при его изучении в этом возрасте является интеллектуальное развитие учащихся. Курс построен на взвешенном соотношении новых и ранее усвоенных знаний, обязательных и дополнительных тем для изучения, а также учитывает возрастные и индивидуальные особенности усвоения знаний учащимися.

Практическая значимость школьного курса математики 5-6 классов состоит в том, что предметом её изучения являются пространственные формы и количественные соотношения реального мира. В современном обществе математическая подготовка необходима каждому человеку, т.к. математика присутствует во всех сферах человеческой деятельности.

Математика является одним из опорных школьных предметов. Математические знания и умения необходимы для изучения алгебры и геометрии в 7-9 классах, а также для изучения смежных дисциплин.

Одной из основных целей изучения математики является развитие мышления, прежде всего абстрактного мышления. С точки зрения воспитания творческой личности особенно важно, чтобы в структуру мышления учащихся , кроме алгоритмических умений и навыков, которые сформулированы в стандартных правилах, формулах и алгоритмах действий, вошли эвристические приёмы как общего, так и конкретного характера. Эти приёмы, в частности, формируются при поиске решения задач высших уровней сложности. В процессе изучения математики также формируются и такие качества мышления, как сила и гибкость , конструктивность и критичность. Для адаптации в современном информационном обществе важным фактором является формирование математического стиля мышления, включающее в себя индукцию и дедукцию, обобщение и конкретизацию, анализ и синтез, классификацию и систематизацию, абстрагирование и аналогию.

Обучение математике даёт возможность школьникам научиться планировать свою деятельность, критически оценивать её, принимать самостоятельные решения, отстаивать свои взгляды и убеждения.

В процессе изучения математики школьники учатся излагать свои мысли ясно и исчерпывающе, приобретают навыки чёткого и грамотного выполнения математических записей, при этом использование математического языка позволяет развивать у учащихся грамотную устную и письменную речь.

Знакомство с историей развития математики как науки формирует у учащихся представление о математике как части общечеловеческой культуры.

Значительное внимание в изложении теоретического материала курса уделяется его мотивации, раскрытию сути основных понятий, идей, методов. Обучение построено на базе теории развивающего обучения, что достигается особенностями изложения теоретического материала и упражнениями на сравнение, анализ, выделение главного, установление связей, классификацию, обобщение и систематизацию. Особо акцентируются содержательное раскрытие математических понятий, толкование сущности математических методов и области их применения, демонстрация возможностей применения теоретических знаний для решения задач прикладного харакрера, например решения текстовых задач, денежных и процентных расчётов , умение пользоваться количественной информацией, представленной в различных формах, умение читать графики. Осознание общего, существенного является основной базой для решения упражнений. Важно приводить детальные пояснения к решению типовых упражнений. Этим раскрывается суть метода, подхода, предлагается алгоритм или эвристическая схема решения упражнений определённого типа.

Курс алгебры 7-9 классов является базовым для математического образования и развития школьников. Алгебраические знания и умения необходимы для изучения геометрии в 7-9 классах, а также для изучения смежных дисциплин.

Практическая значимость школьного курса алгебры 7-9 классов состоит в том, что предметом её изучения являются количественные отношения и процессы реального мира, описанные математическими моделями. В современном обществе математическая подготовка необходима каждому человеку, так как математика присутствует во всех сферах человеческой деятельности.

Одной из основных целей изучения алгебры является развитие мышления, прежде всего Формирование абстрактного мышления. В процессе изучения алгебры формируется логическое и алгоритмическое мышление, а также такие качества мышления, как сила и гибкость, конструктивность и критичность. Для адаптации в современном информационном обществе важным фактором является формирование математического стиля мышления, включающее в себя индукцию и дедукцию, обобщение и конкретизацию, анализ и синтез, классификацию и систематизацию, абстрагирование и аналогию.

Обучение алгебре даёт возможность школьникам научиться планировать свою деятельность, критически оценивать её, принимать самостоятельные решения, отстаивать свои взгляды и убеждения.

В процессе изучения алгебры школьники учатся излагать свои мысли ясно и исчерпывающе, приобретают навыки чёткого и грамотного выполнения математических записей, при этом использование математического языка позволяет развивать у учащихся грамотную устную и письменную речь.

Знакомство с историей развития алгебры как науки формирует У учащихся представление об алгебре как части общечеловеческой культуры.

Значительное внимание в изложении теоретического материала курса уделяется его мотивации, раскрытию сути основных понятий, идей, методов.. Обучение построено на базе теории развивающего обучения, что достигается особенностями изложения теоретического материала и упражнениями на сравнение, анализ, выделение главного , установление связей,, классификацию, обобщение и систематизацию. Особо акцентируются содержательное раскрытие математических понятий, толкование сущности математических методов и области их применения, демонстрация возможностей применения теоретических знаний для решения разнообразных задач прикладного характера, например решения текстовых задач, денежных и процентных расчётов, умение пользоваться количественной информацией, представленной в различной форме, умение читать графики. Осознание общего, существенного является основной базой для решения упражнений. Важно приводить детальные пояснения к решению типовых упражнений. Этим раскрывается суть метода, подхода, предлагается алгоритм или эвристическая схема решения упражнений определённого типа.

Практическая значимость школьного курса геометрии 7-9 классов состоит в том, что предметом её изучения являются пространственные формы и количественные отношения реального мира. В современном обществе математическая подготовка необходима каждому человеку, т.к. математика присутствует во всех сферах человеческой деятельности.

Геометрия является одним из опорных школьных предметов. Геометрические знания и умения необходимы для изучения других школьных дисциплин (Физика, география, химия, информатика и др.)

Одной из основных целей изучение геометрии является развитие мышления, прежде всего формирование абстрактного мышления. В процессе изучения геометрии формируются логическое и алгоритмическое , а также такие качества мышления, как сила и гибкость, конструктивность и критичность. Для адаптации в современном информационном обществе важным фактором является формирование математического стиля мышления, включающего в себя индукцию и дедукцию, обобщение и конкретизацию, анализ и синтез, классификацию и систематизацию, абстрагирование и аналогию.

Обучение геометрии даёт возможность школьникам научиться планировать свою деятельность, критически оценивать её, принимать самостоятельные решения, отставать свои взгляды и убеждения.

В процессе изучения геометрии школьники учатся излагать свои мысли ясно и исчерпывающе, приобретают навыки чёткого выполнения математических записей, при этом использование математического языка позволяет развивать у учащихся грамотную устную и письменную речь.

Знакомство с историей развития геометрии как науки формирует у учащихся представление о геометрии как части общечеловеческой культуры.

Значительное внимание в изложении теоретического материала курса уделяется его мотивации, раскрытию сути основных понятий, идей, методов. Обучение построено на базе теории развивающего обучения, что достигается особенностями изложения теоретического материала и упражнениями на сравнение, анализ, выделение главного, установление связей, классификацию, доказательство, обобщение и систематизацию. Особо акцентируются содержательное раскрытие математических понятий, толкование сущности математических методов и области их применения, демонстрация возможностей применения теоретических знаний для решения разнообразных задач прикладного характера. Осознание общего, существенного является основной базой для решения упражнений. Этим раскрывается суть метода, предлагается алгоритм или эвристическая схема решения упражнений определённого типа.


Общая характеристика

курса математики в 5-9 классах


Содержание математического образования в 5-6 классах представлено в виде следующих содержательных разделов: «Арифметика», «Числовые и буквенные выражения. Уравнения», «Геометрические фигуры. Измерение геометрических величин», «Элементы статистики, вероятности. Комбинаторные задачи». «Математика в историческом развитии»

Содержание раздела «Арифметика» служит базой для дальнейшего изучения учащимися математики и смежных дисциплин, способствует развитию вычислительной культуры и логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе связано с изучением рациональных чисел: натуральных чисел, обыкновенных и десятичных дробей, положительных и отрицательных чисел.

Содержание раздела «Числовые и буквенные выражения. Уравнения» формируют знания о математическом языке. Существенная роль при этом отводится овладению формальным аппаратом буквенного исчисления. Изучение материала способствует формированию у учащихся математического аппарата решения задач с помощью уравнений.

Содержание раздела »Геометрические фигуры. Измерение геометрических величин»,

формирует у учащихся понятия геометрических фигур на плоскости и в пространстве, закладывает формирования геометрической «речи», развивает пространственное воображение и логическое мышление.

Содержание раздела «Элементы статистики, вероятности. Комбинаторные задачи» - обязательный компонент школьного образования, усиливающий его прикладное и практическое применение. Этот материал необходим прежде всего для формирования у учащихся функциональной грамотности, умения воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор вариантов, в том числе в простейших прикладных задачах.

Раздел «Математика в историческом развитии» предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения.

Содержание курса алгебры в 7-9 классах представлено в виде следующих разделов: «Алгебра», «Числовые множества», «Функции», «Элементы прикладной математики», «Алгебра в историческом развитии»

Содержание раздела «Алгебра» формирует знания о математическом языке, необходимые для решения математических задач, задач из смежных дисциплин, а также практических задач. Изучение материала способствует формированию у учащихся математического аппарата решения задач с помощью уравнений, систем уравнений и неравенств.

Материал данного раздела представлен в аспекте, способствующем формированию у учащихся умения пользоваться алгоритмами. Существенная роль при этом отводится развитию алгоритмического мышления – важной составляющей интеллектуального развития человека.

Содержание раздела «Числовые множества» нацелено на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи. Материал раздела развивает понятие о числе, которое связано с изучением действительных чисел.

Цель содержания раздела « Функции»- получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования процессов и явлений окружающего мира. Соответствующий материал способствует развитию воображения и творческих способностей учащихся, умению использовать различные языки математики (словесный, символический, графический ).

Содержание раздела « Элементы прикладной математики» раскрывает прикладное и практическое значение математики в современном мире. Материал данного раздела способствует формированию умения представлять и анализировать различную информацию, пониманию вероятностного характера реальных зависимостей.

Раздел «Алгебра в историческом развитии» предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, создания культурно-исторической среды обучения.


Содержание курса геометрии в 7-9 Классах представлено в виде следующих содержательных разделов: «Геометрические фигуры», «Измерение геометрических величин», «Координаты», «Векторы

Содержание раздела «Геометрические фигуры» служит базой для дальнейшего изучения учащимися геометрии. Изучение материала способствует формированию у учащихся знаний о геометрической фигуре как важнейшей математической модели для описания реального мира. Главная цель данного раздела - развить у учащихся воображение и логическое мышление путём систематического изучения свойств геометрических фигур и применения этих свойств при решении задач вычислительного и конструктивного характера. Существенная роль при этом отводится развитию геометрической интуиции. Сочетание наглядности с формально-логическим подходом является неотъемлемой частью геометрических знаний.

Содержание раздела «Измерение геометрических величин» расширяет и углубляет представление учащихся об измерениях длин, углов и площадей фигур, способствует формированию практических навыков , необходимых как прирешении геометрических задач, так и в повседневной жизни.

Содержание разделов «Координаты», «Векторы» расширяет и углубляет представления учащихся о методе координат, развивает умение применять алгебраический аппарат при решении геометрических задач, а также задач смежных дисциплин.

Раздел «Геометрия в историческом развитии», содержание которого фрагментарно внедрено в изложение нового материала ак сведения об авторах изучаемых фактов и теорем, истории их открытия, предназначен для формирования представлений о геометрии как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения.



Личностные, метапредметные и предметные результаты

освоения содержания курса


Программа позволяет добиваться следующих результатов освоения образовательной программы основного общего образования:

личностные:

  • ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;

  • формирования коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, учебно-исследовательской, творческой и других видах деятельности;

  • умения ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

  • первоначального представления о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации, осознания вклада отечественных учёных в развитие мировой науки, патриотизма, уважения к Отечеству

  • критичности мышления, умения распознавать логически некорректные высказывания, отличать гипотезу от факта;

  • креативности мышления, инициативы, находчивости, активности при решении арифметических задач;

  • умения контролировать процесс и результат учебной математической деятельности;

  • формирования способности к эмоциональному восприятию математических объектов, задач, решений, рассуждений;


метапредметные:


  • умения самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе, развивать мотивы и интересы своей познавательной деятельности;

  • способности самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;

  • умения осуществлять контроль по образцу и вносить необходимые коррективы;

  • способности адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;

  • умения устанавливать причинно-следственные связи; строить логические рассуждения, умозаключения (индуктивные, дедуктивные и по аналогии) и выводы;

  • умения создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;

  • развития способности организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, взаимодействовать и находить общие способы работы; умения работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;

  • формирования учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентностей);

  • первоначального представления об идеях и о методах математики как об универсальном языке науки и техники;

  • развития способности видеть математическую задачу в других дисциплинах, в окружающей жизни;

  • умения находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

  • умения понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;

  • умения выдвигать гипотезы при решении учебных задач и понимания необходимости их проверки;

  • понимания сущности алгоритмических предписаний и умения действовать в соответствии с предложенным алгоритмом;

  • умения самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

  • способности планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;


предметные:


1)осознание значения математики для повседневной жизни человека;

2)представления о математической науке как сфере математической деятельности, об этапах её развития, о её значимости для развития цивилизации;


3)умения работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), развития способности обосновывать суждения, проводить классификацию;

4)владения базовым понятийным аппаратом: иметь представление о числе, дроби, процентах, об основных геометрических объектах (точка, прямая, ломаная, угол, многоугольник, многогранник, круг, окружность, шар, сфера и пр.), формирования представлений о статистических закономерностях в реальном мире и различных способах их изучения;

5)практически значимые математические умения и навыки, их применение к решению математических и нематематических задач, предполагающие умения:

  • выполнять вычисления с натуральными числами, обыкновенными и есятичными дробями положительными и отрицательными числами;

  • решать текстовые задачи арифметическим способом и с помощью уравнений;

  • изображать фигуры на плоскости;

  • использовать геометрический «язык» для описания предметов окружающего мира;

  • измерять длины отрезков, величины углов, вычислять площади и объёмы фигур

  • распознавать и изображать равные и симметричные фигуры;

  • проводить несложные практические вычисления с процентами, использовать прикидку и оценку; выполнять необходимые измерения;

  • использовать буквенную символику для записи общих утверждений, формул, выражений, уравнений;

  • строить на координатной плоскости точки по заданным координатам, определять координаты точек;

  • читать и использовать информацию, представленную в виде таблицы, диаграммы (столбчатой или круговой), в графическом виде;

  • решать простейшие комбинаторные задачи перебором возможных вариантов.



Место курса математики в учебном плане


Базисный учебный (образовательный) план на изучение математики в 5-9 классах основной школы отводит 5 учебных часов в неделю в течение каждого года обучения, всего 850 часов (170*5)













Планируемые результаты обучения математике в 5-6 классах

Арифметика

По окончании изучения курса учащийся научится:

- понимать особенности десятичной системы счисления;

- использовать понятия, связанные с делимостью натуральных чисел;

- выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;

- сравнивать и упорядочивать рациональные числа;

- выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применять калькулятор;

- использовать понятия и умения, связанные с пропорциональностью величин, процентами, в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты;

- анализировать графики зависимостей между величинами (расстояние, время, температура и т.п.).


Учащийся получит возможность:

- познакомиться с позиционными системами счисления с основаниями, отличными от 10;

- углубить и развить представления о натуральных числах и свойствах делимости;

- научиться использовать приёмы, рационализирующие вычисления, приобрести навык контролировать вычисления, выбирая подходящий для ситуации способ.



Числовые и буквенные выражения. Уравнения.


По окончании изучения курса учащийся научится:

- выполнять операции с числовыми выражениями;

- выполнять преобразования буквенных выражений(раскрытие скобок, приведение подобных слагаемых);

- решать линейные уравнения, решать текстовые задачи алгебраическим методом.


Учащийся получит возможность:

- развить представления о буквенных выражениях и их преобразованиях;

- овладеть специальными приёмами решения уравнений, применять аппарат уравнеий для решения как текстовых, так и практических задач.



Геометрические фигуры.

Измерение геометрических величин


По окончании изучения курса учащийся научится:

- распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры и их элементы;

- строить углы, определять их градусную меру;

- распознавать и изображать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;

- определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;

- вычислять объём прямоугольного параллелепипеда и куба.


Учащийся получит возможность:

- научиться вычислять объём пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;

- углубить и развить представления о пространственных геометрических фигурах;

- научиться применять понятие развёртки для выполнения практических расчётов.



Элементы статистики, вероятности. Комбинаторные задачи.


По окончании изучения курса учащийся научится:

-использовать простейшие способы представления и анализа статистических данных;

- решать комбинаторные задачи на нахождение количества объектов или комбинаций.


Учащийся получит возможность:

- приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы;

- научиться некоторым специальным приёмам решения комбинаторных задач.



Планируемые результаты изучения алгебры в 7-9 классах

  • Алгебраические выражения



Выпускник научится:

  • оперировать понятиями «тождество», «тождественные преобразования», решать задачи, содержащие буквенные данные, работать с формулами;

  • оперировать понятием квадратного корня, применять его в вычислениях;

  • выполнять преобразования выражений, содержащих степени с целыми показателями и квадратные корни;

  • выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;

  • выполнять разложение многочленов на множители.

Выпускник получит возможность:

  • выполнить многошаговые преобразования рациональных выражений, применяя широкий выбор способов и приёмов;

  • применять тождественные преобразования для решения задач из различных разделов курса.







  • Уравнения

Выпускник научится:

  • решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными;

  • понимать уравнение как важнейшую математическую модельдля описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;

  • применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными.

Выпускник получит возможность:

  • Овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;

  • Применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.



  • Неравенства



Выпускник научится:

  • Понимать терминологию и символику, связанную с отношением неравенства, свойства числовых неравенств;

  • Решать линейные неравенства с одной переменной и их системы; решать квадратные неравеств с опорой на графические представления;

  • Применять аппарат неравенств для решения задач из различных разделов курса.



Выпускник получит возможность:



  • Овладеть различными приёмами доказательства неравенств; уверенно применять аппарат неравенств для решения разнообразных математических задач, задач из смежных предметов и практики;

  • Применять графические представления для исследования неравенств, содержащих буквенные коэффициенты.





  • Числовые множества



Выпускник научится:

  • Понимать терминологию и символику, связанные с понятием множества, выполнять операции над множествами;

  • Использовать начальные представления о множестве действительных чисел.



Выпускник получит возможность:

  • Развивать представление о множествах;

  • Развивать представление о числе и числовых системах от натуральных чисел до действительных; о роли вычислений в практике;

  • Развить и углубить знания о десятичной записи действительных чисел(периодические и непериодические дроби)



  • Функции



Выпускник научится:

  • Понимать и использовать функциональные понятия. язык (термины, символические обозначения);



  • Строить графики элементарных функций, исследовать свойства числовых функций на основе изучения поведения их графиков;

  • Понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами;

  • Понимать и использовать язык последовательностей (термины, символические обозначения)

  • Применять формулы, связанные с арифметической и геометрической прогрессиями, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни.

Выпускник получит возможность:

  • Проводить исследования, связанные с изучением свойств функции, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочно-заданные, с выколотыми точками и т.п. );

  • Использовать функциональные представления и свойства функции решения математических задач из различных разделов курса;

  • Решать комбинированные задачи с применением формул n-го члена и суммы первых n членов арифметической и геометрической прогрессий, применяя при этом аппарат уравнений и неравенств;

  • Понимать арифметическую и геометрическую прогрессии как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую - с экспоненциальным ростом.



  • Элементы прикладной математики



Выпускник научится:

  • Использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин;

  • Использовать простейшие способы представления и анализа статистических данных;

  • Находить относительную частоту и вероятность случайного события;

  • Решать комбинаторные задачи на нахождение числа объектов или комбинаций.



Выпускник получит возможность:

  • Понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения;

  • Понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных;

  • Приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы;

  • Приобрести опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов; научиться некоторым специальным приёмам решения комбинаторных задач.





Планируемые результаты изучения геометрии в 7-9 классах

  • Геометрические фигуры



Выпускник научится

  • Пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;

  • Распознавать и изображать на чертежах и рисунках геометрические фигуры и их комбинации;

  • Классифицировать геометрические фигуры;

  • Находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0 до 180, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрия, поворот, параллельный перенос);

  • Оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов;

  • Доказывать теоремы;

  • Решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательства;

  • Решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;

  • Решать простейшие планиметрические задачи.

Выпускник получит возможность

  • Овладеть методами решения задач на вычисление и доказательство: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;

  • Приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;

  • Овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;

  • Научиться решать задачи на построение методом геометрических мест точек и методом подобия;

  • Приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ;

  • Приобрести опыт выполнения проектов.



  • Измерение геометрических величин



Выпускник научится

  • Использовать свойства измерения длин, углов и площадей при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;

  • Вычислять площади треугольников, прямоугольников, трапеций, кругов и секторов;

  • Вычислять длину окружности и длину дуги окружности;

  • Вычислять длины линейных элементов фигур и их углы, используя изученные формулы, в том числе формулы длины окружности и длины дуги окружности, формулы площадей фигур;

  • Решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур;

  • Решать практические задачи, связанные с нахождением геометрических величин( используя при необходимости справочники и технические средства).



Выпускник получит возможность научиться:

  • Вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;

  • Вычислять площади многоугольников, используя отношения равновеликости и равносоставленности.

  • Применять алгебраический и тригонометрический аппарат и идеи движения при решении задач на вычисление площадей многоугольников.





  • Координаты

Выпускник научится

  • Вычислять длину отрезка по координатам его концов; вычислять координаты середины отрезка;

  • Использовать координатный метод для изучения свойств прямых и окружностей.

Выпускник получит возможность

  • Овладеть координатным методом решения задач на вычисление и доказательство;

  • Приобрести опыт использования компьютерных прогамм для анализа частных случаев взаимного расположения окружностей и прямых;

  • Приобрести опыт выполнения проектов.



  • Векторы

Выпускник научится

  • Оперировать с векторами: находить сумму и разность двух векторов, заданных геометрически, находить вектор, равный произведению заданного вектора на число;

  • Находить для векторов, заданных координатами: длину вектора, координаты суммы и разности двух и более векторов, координаты произведения вектора на число, применяя при необходимости переместительный, сочетательный или распределительный законы;

  • Вычислять скалярное произведение векторов, находить угол между векторами, устанавливать перпендикулярность прямых.



Выпускник получит возможность

  • Овладеть векторным методом для решения задач на вычисление и доказательство;

  • Приобрести опыт выполнения проектов.



Содержание курса математики 5-6 классов.


Арифметика

Натуральные числа

  • Ряд натуральных чисел. Десятичная запись натуральных чисел. Округление натуральных чисел.

  • Координатный луч.

  • Сравнение натуральных чисел. Сложение и вычитание натуральных чисел. Свойства сложения.

  • Умножение и деление натуральных чисел. Свойства умножения. Деление с остатком. Степень числа с натуральным показателем.

  • Делители и кратные натурального числа. Наибольший общий делитель. Наименьшее общее кратное. Признаки делимости на 2, на 3, на 5, на 9, на 10.

  • Простые и составные числа. Разложение чисел на простые множители

  • Решение текстовых задач арифметическими способами.


Дроби

  • Обыкновенные дроби. Основное свойство дроби. Нахождение дроби от числа. Нахождение числа по значению её дроби. Правильные и неправильные дроби. Смешанные числа.

  • Сравнение обыкновенных дробей и смешанных чисел. Арифметические действия с обыкновенными дробями и смешанными числами.

  • Десятичные дроби. Сравнение и округление десятичных дробей. Арифметические действия с десятичными дробями. Прикидки результатов вычислений. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной. Бесконечные периодические десятичные дроби . Десятичное приближение обыкновенной дроби.

  • Отношение. Процентное отношение двух чисел. Деление числа в данном отношении. Масштаб.

  • Пропорция. Основное свойство пропорции. Прямая и обратная пропорциональные зависимости.

  • Проценты. Нахождение процентов от числа. Нахождение числа по его процентам.

  • Решение текстовых задач арифметическими способами.


Рациональные числа

  • Положительные, отрицательные числа и число 0.

  • Противоположные числа. Модуль числа.

  • Целые числа. Рациональные числа. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Свойства сложения и умножения рациональных чисел.

  • Координатная прямая. Координатная плоскость.


Величины, зависимости между величинами.

  • Единицы длины, площади, объёма, массы, времени, скорости.

  • Параметры зависимостей между величинами. Представление зависимостей в виде формул. Вычисления по формулам.


Числовые и буквенные выражения. Уравнения.

  • Числовые выражения. Значение числового выражения. Порядок действий в числовых выражениях. Буквенные выражения. Раскрытие скобок. Подобные слагаемые, приведение подобных слагаемых. Формулы.

  • Уравнения. Корень уравнения. Основные свойства уравнений. Решение текстовых задач с помощью уравнений.



Элементы статистики, вероятности. Комбинаторные задачи.

  • Представление данных в виде таблиц, круговых и столбчатых диаграмм, графиков.

  • Среднее арифметическое. Среднее значение величины.

  • Случайное событие. Достоверное и невозможное события. Решение комбинаторных задач.



Геометрические фигуры.

Измерения геометрических величин

  • Отрезок. Построение отрезка. Длина отрезка, ломаной. Измерение длины отрезка, построение отрезка заданной длины. Периметр многоугольника. Плоскость. Прямая. Луч.

  • Угол. Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира.

  • Прямоугольник. Квадрат. Треугольник. Виды треугольников. Окружность и круг. Длина окружности. Число .

  • Равенство фигур. Понятие и свойства площади. Площадь прямоугольника и квадрата. Площадь круга. Ось симметрии фигуры.

  • Наглядные представления о пространственных фигурах, таких как: прямоугольный параллелепипед, куб, пирамида, цилиндр, конус, шар, сфера. Примеры развёрток многогранников, цилиндра, конуса. Понятие и свойства объёма. Объём прямоугольного параллелепипеда и куба.

  • Взаимное расположение двух прямых. Перпендикулярные прямые. Параллельные прямые.

  • Осевая и центральная симметрии.


Математика в историческом развитии.

Римская система счисления. Позиционные системы счисления. Обозначение цифр в Древней Руси. Старинные меры длины. Введение метра как единицы длины. Метрическая система мер в Росси, в Европе. История формирования математических символов. Дроби в Вавилоне, Египте, Риме, на Руси. Открытие десятичных дробей. Мир простых чисел. Золотое сечение. Число 0. Появление отрицательных чисел.

Л.Ф.Магницкий. П.Л.Чебышев. А.Н.Колмогоров.




Количество контрольных работ:

В 5 классе- 10

В 6 классе-12






Содержание курса алгебры 7-9 классов

  • Алгебраические выражения



Выражение с переменными. Значение выражения с переменными. Допустимые значения переменных. Тождество. Тождественные преобразования алгебраических выражений. Доказательство тождеств.

Степень с натуральным показателем и её свойства. Одночлены. Одночлен стандартного вида. Степень одночлена. Многочлены. Многочлен стандартного вида. Степень многочлена. Сложение, вычитание и умножение многочленов. Формулы сокращённого умножения: квадрат суммы и квадрат разности двух выражений, произведение суммы и разности двух выражений. Разложение многочлена на множители. Вынесение множителя за скобки. Метод группировки. Разность квадратов двух выражений. Сумма и разность кубов двух выражений. Квадратный трёхчлен. Корень квадратного трёхчлена. Свойства квадратного трёхчлена. Разложение квадратного трёхчлена на множители

Рациональные выражения. Целые выражения. Дробные выражения. Рациональная дробь. Основное свойство рациональной дроби. Сложение, вычитание, умножение и деление рациональных дробей. Возведение рациональной дроби в степень. Тождественные преобразования рациональных выражений. Степень с целым показателем и её свойства.

Квадратные корни. Арифметический квадратный корень и его свойства. Тождественные преобразования выражений, содержащих квадратные корни.



  • Уравнения

Уравнение с одной переменной. Корень уравнения. Равносильные уравнения. Свойства уравнений с одной переменной. Уравнение как математическая модель реальной ситуации.

Линейное уравнение. Квадратное уравнение. Формула корней квадратного уравнения. Теорема Виета. Рациональные уравнения. Решение равносильных уравнений, сводящихся к линейным или квадратным уравнениям. Решение текстовых задач с помощью рациональных уравнений.

Уравнение с двумя переменными. График уравнения с двумя переменными. Линейное уравнение с двумя переменными и его график.

Системы уравнений с двумя переменными. Графический метод решения системы уравнений с двумя переменными. Решение систем уравнений методом подстановки и сложения. Система двух уравнений с двумя переменными как модель реальной ситуации.

  • Неравенства

Числовые неравенства и их свойства. Сложение и умножение числовых неравенств. Оценивание значения выражения. Неравенство с одной переменной. Равносильные неравенства. Числовые промежутки. Линейные и квадратные неравенства с одной переменной. Системы неравенств с одной переменной.

  • Числовые множества

[link]


Технические средства обучения

  1. Компьютер.

  2. Мультимедиапроектор.

  3. Экран.



Учебно-практическое и учебно-лабораторное оборудование

  1. Доска магнитная с координатной сеткой.

  2. Набор цифр, букв, знаков для средней школы.

  3. Наборы «Части целого на круге». «Простые дроби».

  4. Наборы геометрических тел.

  5. Комплект чертёжных инструментов ( классных): линейка, транспортир, угольник(