Рабочая программа по геометрии для 8 класса, базовый уровень, ФГОС

Автор публикации:

Дата публикации:

Краткое описание: ...



2Городской округ город Воронеж


муниципальное общеобразовательное учреждение средняя общеобразовательная школа с углубленным изучением отдельных предметов №38 имени Е.А. Болховитинова



УТВЕРЖДЕНО

решение НМС протокол №___

от_______________20___ года

Председатель НМС

_________________Т.Л. Сунцова







РАБОЧАЯ ПРОГРАММА


по ______геометрии_________________________________________________________

(указать предмет, курс)


Ступень обучения (класс) среднее общее образование (8 А классы)


Количество часов___70 __________


Составитель _Селиванова Тамара Ивановна ____________________________________

Программа разработана на основе примерной программы по геометрии к учебнику Геометрия: 7 – 9 кл. / Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др. – М.: Просвещение, 2014. (сост. Г.И. Маслакова. – М.: ВАКО, 2014,- 40 с.)





















2016-2017 учебный год


Пояснительная записка

Рабочая программа по геометрии для 8 класса составлена на основании

программы по геометрии к учебнику Геометрия: 7 – 9 кл. / Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др. – М.: Просвещение, 2014. (сост. Г.И. Маслакова. – М.: ВАКО, 2014,- 40 с.)

Согласно Федеральному базисному учебному плану для общеобразовательных учреждений Российской Федерации на изучение предмета геометрии в 8 классе отводится 70 часов в год , по 2 часа в неделю из обязательной части.

Цели обучения

1. В направлении личностного развития:

развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;

формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;

формирование качеств мышления, необходимых для адаптации в современном информационном обществе; развитие интереса к математическому творчеству и математических способностей.

  1. В метапредметном направлении:

формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;

развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;

формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности.

  1. В предметном направлении:

овладение математическими знаниями и умениями, необходимыми для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения в повседневной жизни;

создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.

Развитие логического и критического мышления, культуры речи;

Воспитание качеств личности, обеспечивающих, уважение к истине и критического отношения к собственным и чужим суждениям;

Формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

Развитие интереса к математическому творчеству и математических способностей

Метапредметное

  • Формирование представлений об идеях и о методах математики как об универсальном языке науки и техники, части общечеловеческой культуры;

  • Умение видеть математическую задачу в окружающем мире, использовать математические средства наглядности (рисунки, чертежи, схемы) для иллюстрации, интерпретации, аргументации;

  • Овладение умением логически обосновывать то, что многие зависимости, обнаруженные путем рассмотрения отдельных частных случаев, имеют общее значение и распространяются на все фигуры определенного вида, и, кроме того, вырабатывать потребность в логическом обосновании зависимостей

Предметное

  • Выявление практической значимости науки, ее многообразных приложений в смежных дисциплинах и повседневной деятельности людей;

  • Создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.


  1. ПЛАНИРУЕМЫЕ ЛИЧНОСТНЫЕ, МЕТАПРЕДМЕТНЫЕ И ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ КУРСА

  1. В направлении личностного развития:

  • умение ясно, точно, грамотно излагать свои мысли в устной и письменной форме, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

  • критичность мышления, умения распознавать логически некорректные высказывания, отличать гипотезу от факта;

  • представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;

  • креативность мышления, инициатива, находчивость, активность при решении математических задач;

  • умение контролировать процесс и результат учебной математической деятельности;

  • способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.

  1. В метапредметном направлении:

  • умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

  • умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

  • умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;

  • умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

  • умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

  • понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

  • умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

  • умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

  • первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений

  • процессов.

3. В предметном направлении:

  • использовать язык геометрии для описания предметов окружающего мира;

  • распознавать и изображать на чертежах и рисунках геометрические фигуры и их отношения;

  • изображать геометрические фигуры; выполнять чертежи по условию задачи; осуществлять преобразования фигур;

  • распознавать на чертежах, моделях и в окру­жающей обстановке основные пространствен­ные тела, изображать их;

  • решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные по­строения, правила симметрии;

  • проводить доказательные рассуждения при ре­шении задач, используя известные теоремы, обнаруживая возможности для их использо­вания.

Коммуникативные универсальные учебные действия:

умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, общие способы работы;

умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов;

слушать партнера;

формулировать, аргументировать и отстаивать свое мнение.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • распознавания логически некорректных рассуждений;

  • записи математических утверждений, доказательств;

  • анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;

  • решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;

  • решения учебных и практических задач, требующих систематического перебора вариантов;

  • сравнения шансов наступления случайных событий, для оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;

  • понимания статистических утверждений.



  1. СОДЕРЖАНИЕ КУРСА.

Четырехугольники. Выпуклые многоугольники. Параллелограмм, ромб, прямоугольник, квадрат, трапеция, равнобедренная трапеция. Их свойства и признаки.

Окружность, круг Окружность, круг, их элементы и свойства; центральные и вписанные углы. Касательная и секущая к окружности, их свойства. Вписанные и описанные окружности для треугольников, четырехугольников, правильных многоугольников.

Отношения Аксиома параллельности Евклида. Теорема Фалеса. Пропорциональные отрезки, подобие фигур. Подобные треугольники. Признаки подобия треугольников.

Площади Понятие о площади плоской фигуры и ее свойствах. Измерение площадей. Единицы измерения площади. Формулы площади треугольника, параллелограмма и его частных видов, трапеции, формулы длины ок­ружности и площади круга. Сравнение и вычисление площадей. Теорема Пифагора. Тригонометрические функции острого угла в прямоугольном треугольнике Тригонометрические функции тупого угла. Вычисление элементов треугольников с использованием тригонометрических соотношений.

История математики. Выдающиеся математики и их вклад в развитие науки:Пифагор. Фалес, Р. Декарт. Математика в развитии России: Петр I, школа математических и навигацких наук, развитие российского флота, А.Н.Крылов.

Таблица тематического распределения количества часов


п/п




Разделы, темы



Количество часов

Текущий и промежуточный

контроль

Примерная

программа

Рабочая

программа

Коррекция программы



1

Четырёхугольники

14

14

-

1 контрольная работа

2

Площадь

14

13

-1

1 контрольная работа

3

Подобные треугольники

19

20

+1

2 контрольные работы

4

Окружность

17

14

-3

1 контрольная работа

5

Повторение

6

5(3+2)

-1

1 срезовая к\работа

6

Зачетная неделя

-

4

+4



Итого

70

70

+5 - 5



Тематическое планирование

1.

Повторение курса геометрии 7 класса

3

2.

Глава V. Четырехугольники

14

1

Многоугольники

2

2

Параллелограмм и трапеция

6

3

Прямоугольник. Ромб. Квадрат

4

4

Решение задач

1


Контрольная работа № 3

1

3.

Глава VI. Площадь

13

1

Площадь многоугольника

2

2

Площади параллелограмма, тре­угольника и трапеции

6

3

Теорема Пифагора

3


Решение задач

1


Контрольная работа № 6

1

4.

Глава VIL Подобные треугольники

20

1

Определение подобных треуголь­ников

2

2

Признаки подобия треугольников

5


Контрольная работа № 9

1

3

Применение подобия к доказа­тельству теорем и решению задач

7

4

Соотношения между сторонами и углами прямоугольного тре­угольника

3


Решение задач

1


Контрольная работа № 10

1

5.

Глава VHI. Окружность

14

1

Касательная к окружности

2

2

Центральные и вписанные углы

4

3

Четыре замечательные точки окружности

3

4

Вписанная и описанная окруж­ности

3


Решение задач

1


Контрольная работа № 13

1

6.

Итоговое повторение

2

ЗН

Зачётная неделя

4


Всего

70

1. Оценка письменных контрольных работ обучающихся по математике.

Ответ оценивается отметкой «5», если:

1) работа выполнена полностью;

2) в логических рассуждениях и обосновании решения нет пробелов и ошибок;

3) в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится, если:

1) работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

2)допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

1) допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

1) допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Отметка «1» ставится, если:

1)работа показала полное отсутствие у обучающегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

2.Оценка устных ответов обучающихся по математике

Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

  • изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

  • показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

  • продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

  • отвечал самостоятельно, без наводящих вопросов учителя;

  • возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4»,

если удовлетворяет в основном требованиям на оценку «5»,

но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

  • допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

  • допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

  • неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке учащихся» в настоящей программе по математике);

  • имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

  • при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;

  • обнаружено незнание учеником большей или наиболее важной части учебного материала;

  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Отметка «1» ставится, если:

  • ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изученному материалу.

Итоговая оценка знаний, умений и навыков

Основанием для выставления итоговой оценки знаний служат результаты наблюдений учителя за повседневной работой учеников, устного опроса, текущих и итоговых контрольных работ. Однако последним придается наибольшее значение.

СОГЛАСОВАНО

Заместитель директора по УВР

______________________/А.И. Барсукова/

«__30_» __сентября______ 2016 г.


При выставлении итоговой оценки учитывается как уровень теоретических знаний ученика, так и овладение им практическими умениями и навыками. Однако ученику не может быть выставлена положительная итоговая оценка по математике, если все или большинство его текущих обучающих и контрольных работ, а также итоговая контрольная работа оценены как неудовлетворительные, хотя его устные ответы оценивались положительно.