Аннотация к рабочей программе по алгебре и началам анализа 10 класс.
Рабочая программа по алгебре и началам математического анализа (базовый уровень) составлена на основе:
- федерального компонента Государственного образовательного стандарта среднего (полного) общего образования по математике (алгебра и начала математического анализа) на базовом уровне;
- программы общеобразовательных учреждений. Алгебра и начала математического анализа. 10 -11 классы. М. – Просвещение. 2009 г. Т.А. Бурмистрова.
При изучении курса математики на базовом уровне продолжаются и получают развитие содержательные линии: «Алгебра», «Функции», «Уравнения и неравенства», «Элементы комбинаторики, теории вероятностей, статистики и логики», вводится линия «Начала математического анализа».
Изучение математики на базовом уровне среднего (полного) общего образования направлено на достижение следующих целей:
- формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;
- развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для будущей профессиональной деятельности, а также последующего обучения в высшей школе;
- овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;
- воспитание средствами математики культуры личности, понимания значимости математики для научно-технического прогресса, отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики, эволюцией математических идей.
- систематическое изучение функций как важнейшего математического объекта средствами алгебры и математического анализа, раскрытие политехнического и прикладного значения общих методов математики, связанных с исследованием функций, подготовка необходимого аппарата для изучения геометрии и физики.
Задачи изучения:
- систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры, расширение и совершенствование алгебраического аппарата, сформированного в основной школе, и его применение к решению математических и нематематических задач;
- расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применения функций для описания и изучения реальных зависимостей;
- развитие представлений о вероятностно-статистических закономерностях в окружающем мире, совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления;
- знакомство с основными идеями и методами математического анализа.
Программа рассчитана на 3 учебных часа в неделю, всего 108 учебных часов в год.
Распределение часов по темам.
Название Темы.
Количество часов.
1
Тригонометрические функции любого угла.
6
2
Основные тригонометрические формулы.
7
3
Формулы сложения и их следствия.
9
4
Тригонометрические функции числового аргумента.
6
5
Основные свойства функции.
13
6
Решение тригонометрических уравнений и неравенств.
13
7
Производная .
14
8
Применение непрерывности и производной.
9
9
Применение производной к исследованию функции.
16
10
Итоговое повторение.
15
Итого
108
Содержание рабочей программы.
Тригонометрические выражения и их преобразования- 22 часа.
Определение синуса, косинуса, тангенса и котангенса. Свойства синуса, косинуса, тангенса и котангенса. Радианная мера угла. Соотношения между тригонометрическими функциями одного и того же угла. Применение тригонометрических формул к преобразованию выражений. Формулы приведения.
Формулы сложения. Формулы двойного угла. Формулы суммы и разности тригонометрических выражений
Основная цель — сформировать умения, связанные с тождественными преобразованиями тригонометрических выражений.
2. Тригонометрические функции числового аргумента - 6 часов.
Тождественные преобразования тригонометрических выражений. Тригонометрические функции числового аргумента: синус, косинус и тангенс. Периодические функции. Свойства и графики тригонометрических функций.
Основная цель — сформировать умения, связанные с тождественными преобразованиями тригонометрических выражений; изучить свойства тригонометрических функций и познакомить учащихся с их графиками.
Особое внимание следует уделить работе с единичной окружностью. Она становится основой для определения синуса и косинуса числового аргумента и используется далее для вывода свойств тригонометрических функций и решения тригонометрических уравнений.
Основные свойства функций-13 часов.
Систематизируются сведения о функциях и графиках, вводятся новые понятия, связанные с исследованием функций (экстремумы, периодичность), и общая схема исследования функций. В соответствии с этой общей схемой проводится исследование функций синус, косинус, тангенс и строятся их графики.
4. Решение тригонометрических уравнений и неравенств- 13часов.
Простейшие тригонометрические уравнения. Решение тригонометрических уравнений.
Основная цель — сформировать умение решать простейшие тригонометрические уравнения и познакомить с некоторыми приемами решения тригонометрических уравнений.
Решение простейших тригонометрических уравнений основывается на изученных свойствах тригонометрических функций. При этом целесообразно широко использовать графические иллюстрации с помощью единичной окружности. Отдельного внимания заслуживают уравнения вида sin x= 1, соs х = 0 и т. п. Их решение нецелесообразно сводить к применению общих формул.
Отработка каких-либо специальных приемов решения более сложных тригонометрических уравнений не предусматривается. Достаточно рассмотреть отдельные примеры решения таких уравнений, подчеркивая общую идею решения: приведение уравнения к виду, содержащему лишь одну тригонометрическую функцию одного и того же аргумента, с последующей заменой.
Материал, касающийся тригонометрических неравенств и систем уравнений, не является обязательным.
Как и в предыдущей теме, предполагается возможность использования справочных материалов.
5. Производная- 14 часов.
Производная. Производные суммы, произведения и частного. Производная степенной функции с целым показателем. Производные синуса и косинуса.
Основная цель — ввести понятие производной; научить находить производные функций в случаях, не требующих трудоемких выкладок.
При введении понятия производной и изучении ее свойств следует опираться на наглядно-интуитивные представления учащихся о приближении значений функции к некоторому числу, о приближении участка кривой к прямой линии и т. п.
Формирование понятия предела функции, а также умение воспроизводить доказательства каких-либо теорем в данном разделе не предусматриваются. В качестве примера вывода правил нахождения производных в классе рассматривается только теорема о производной суммы, все остальные теоремы раздела принимаются без доказательства. Важно отработать достаточно свободное умение применять эти теоремы в несложных случаях.
В ходе решения задач на применение формулы производной сложной функции можно ограничиться случаем f(kx+b): именно этот случай необходим далее.
6 Применение производной- 25 часов.
Геометрический и механический смысл производной. Применение производной к построению графиков функций и решению задач на отыскание наибольшего и наименьшего значений.
Основная цель — ознакомить с простейшими методами дифференциального исчисления и выработать умение применять их для исследования функций и построения графиков.
Опора на геометрический и механический смысл производной делает интуитивно ясными критерии возрастания и убывания функций, признаки максимума и минимума.
Основное внимание должно быть уделено разнообразным задачам, связанным с использованием производной для исследования функций. Остальной материал (применение производной к приближенным вычислениям, производная в физике и технике) дается в ознакомительном плане.
Повторение. Решение задач – 15 часов.