Рабочая программа по математике составлена для 10 «Э» класса /экономический/.

Автор публикации:

Дата публикации:

Краткое описание: ...


Город Владивосток

Муниципальное бюджетное общеобразовательное учреждение

«Гимназия №2 г. Владивостока»



СОГЛАСОВАНА

УТВЕРЖДАЮ

Заместитель директора по НМР

Директор гимназии №2

___________________ Т. В. Лимберг

___________ И. А. Шендрик

«___» _____________ 2015 г.

«___» _______2015 г.






РАБОЧАЯ ПРОГРАММА

По математике


Ступень обучения 10 «Э» класс среднее общее образование















Разработчик:

Ким Валентина Александровна

Учитель математики



ПРИНЯТА

На заседании методического объединения

Протокол №______

от «___» _____________ 2015 г.

Руководитель МО

___________________ Г. А. Тарасова









2015 год

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА


Нормативно правовая база для составления рабочей программы по математике

10 «Э» класс (социально-экономический профиль):

  • Федеральный закон Российской Федерации от 29 декабря 2012 г. N 273-ФЗ «Об образовании в Российской Федерации».

  • Приказ Министерства образования Российской Федерации от 05.03.2004 № 1089 «Об утверждении федерального компонента государственных стандартов начального общего, основного общего и среднего (полного) общего образования».

  • Приказ Министерства образования Российской Федерации от 09.03.2004 № 1312 «Об утверждении федерального базисного учебного плана и примерных учебных планов для образовательных учреждений Российской Федерации, реализующих программы общего образования».

  • Приказ Министерства образования и науки Российской Федерации от 30.08.2010 № 889 «О внесении изменений в федеральный базисный учебный план и примерные учебные планы для образовательных учреждений Российской Федерации, реализующих программы общего образования, утвержденные приказом Министерства образования Российской Федерации от 09.03.2004 № 1312 "Об утверждении федерального базисного учебного плана и примерных учебных планов для образовательных учреждений Российской Федерации, реализующих программы общего образования".

  • Приказ Министерства образования и науки Российской Федерации от 31.01.2012 № 69 «О внесении изменений в федеральный компонент государственных образовательных стандартов начального общего, основного общего и среднего (полного) общего образования, утверждённый приказом Министерства образования Российской Федерации от 05.03.2004 № 1089 государственного образовательного стандарта начального общего образования»

  • Приказ Министерства образования и науки Российской Федерации от 01.02.2012 № 74 «О внесении изменений в федеральный базисный учебный план и примерные учебные планы для образовательных учреждений Российской Федерации, реализующих программы общего образования, утвержденные приказом Министерства образования Российской Федерации от 9 Приказ Министерства образования и науки Российской Федерации от 31.03.2014 № 253 «Об утверждении федерального перечня учебников, рекомендованных к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования».

  • Приказ Министерства образования и науки Российской Федерации от 30.08.2013 № 1015 «Об утверждении Порядка организации и осуществления образовательной деятельности по основным общеобразовательным программам - образовательным программам начального общего, основного общего и среднего общего образования».

  • Постановление Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека и Главного государственного санитарного врача Российской Федерации от 29.12.2010 № 189 «Об утверждении СанПиН 2.4.2.2821-10 «Санитарно-эпидемиологические требования к условиям и организации обучения в общеобразовательных учреждениях».

Современные тенденции по модернизации среднего образования направлены на создание в старшем звене школы классов различных профилей. Такие преобразования диктуются специальным заказом общества, который ставит перед школой задачу: дать учащимся полное среднее образование и помочь ему в профессиональном выборе. Такой подход к обучению требует пересмотреть структуру построения учебного материала и его изложения, прежде всего, в старшей школе. Разработанная программа представляет собой программу расширенного курса геометрии, алгебры и начал анализа в 10 классе, на изучение которой отведено 204 ч. Из них на геометрию – 64 ч., на алгебру и начала анализа – 140 ч. Преподавание ведется блочным методом. Каждый блок заканчивается проверочной работой.

Содержание программы определено с учетом приоритета перехода на профильное обучение, подготовки к ЕГЭ. Для ОУ и класса социально-экономического профиля, данный расширенный курс отвечает как требованиям стандарта математического образования, так и требованиям КИМ-ов ЕГЭ. Гимназический компонент усилен повышенным уровнем содержания учебного материала.

Цели:

изучение математики в старшей школе на профильном уровне направлено на достижение следующих целей:

  • формирование представлений об идеях и методах математики; о математике как универсальном языке науки, средстве моделирования явлений и процессов;

  • овладение устным и письменным математическим языком, математическими знаниями и умениями, необходимыми для изучения школьных естественно-научных дисциплин, для продолжения образования и освоения избранной специальности на современном уровне;

  • развитие логического мышления, алгоритмической культуры, пространственного воображения, развитие математического мышления и интуиции, творческих способностей на уровне, необходимом для продолжения образования и для самостоятельной деятельности в области математики и ее приложений в будущей профессиональной деятельности;

  • воспитание средствами математики культуры личности: знакомство с историей развития математики, эволюцией математических идей, понимание значимости математики для общественного прогресса.

Основой целью является обновление требований к уровню подготовки выпускников в системе естественно математического образования, отражающее важнейшую особенность педагогической концепции государственного стандарта— переход от суммы «предметных результатов» (то есть образовательных результатов, достигаемых в рамках отдельных учебных предметов) к меж предметным и интегративным результатам. Такие результаты представляют собой обобщенные способы деятельности, которые отражают специфику не отдельных предметов, а ступеней общего образования. В государственном стандарте они зафиксированы как общие учебные умения, навыки и способы человеческой деятельности, что предполагает повышенное внимание к развитию меж предметных связей курса алгебры и начал анализа.

Основная задача - обеспечение прочного и сознательного овладения учащимися системой математических знаний и умений, достаточных для изучения сложных дисциплин и продолжение образования.

Программа составлена на принципе системного подхода к изучению математики. В профильном курсе содержание образования, представленное в основной школе, развивается в следующих направлениях:

формирование представлений о расширении числовых множеств от натуральных до комплексных, как способе построения нового математического аппарата для решения задач окружающего мира и внутренних задач математики; совершенствование техники вычислений;

развитие и совершенствование техники алгебраических преобразований, решения уравнений, неравенств, систем;

систематизация и расширение сведений о функциях, совершенствование графических умений; знакомство с основными идеями и методами математического анализа в объеме, позволяющем исследовать элементарные функции и решать простейшие;

развитие представлений о вероятностно-статистических закономерностях в окружающем мире;

совершенствование математического развития до уровня, позволяющего свободно применять изученные факты и методы при решении задач из различных разделов курса, а также использовать их в нестандартных ситуациях;

формирование способности строить и исследовать простейшие математические модели при решении прикладных задач, задач из смежных дисциплин, углубление знаний об особенностях применения математических методов к исследованию процессов и явлений в природе и обществе.

Общеучебные умения, навыки и способы деятельности:

в ходе изучения математики в профильном курсе старшей школы учащиеся продолжают овладение разнообразными способами деятельности, приобретают и совершенствуют опыт:

  • проведения доказательных рассуждений, логического обоснования выводов, использования различных языков математики для иллюстрации, интерпретации, аргументации и доказательства;

  • решения широкого класса задач из различных разделов курса, поисковой и творческой деятельности при решении задач повышенной сложности и нетиповых задач;

  • планирования и осуществления алгоритмической деятельности: выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; использования и самостоятельного составления формул на основе обобщения частных случаев и результатов эксперимента; выполнения расчетов практического характера;

  • построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин и реальной жизни; проверки и оценки результатов своей работы, соотнесения их с поставленной задачей, с личным жизненным опытом;

  • самостоятельной работы с источниками информации, анализа, обобщения и систематизации полученной информации, интегрирования ее в личный опыт.

Место предмета в базисном учебном плане:

согласно Федеральному базисному учебному плану для образовательных учреждений Российской Федерации для обязательного изучения математики на этапе основного общего образования отводится не менее 204 ч. Из расчета 6 ч в неделю (при этом предмет математика делится на алгебру и геометрию и преподается модульно.

Тематическое планирование составлено к УМК А.Г. Мордкович, П.В. Семенов. Алгебра и начала анализа. 10 класс. Учебник профильного уровня на основе федерального компонента государственного стандарта общего образования с учетом авторского тематического планирования учебного материала, приведенного в учебнике.














Тематическое распределение количества часов


п/п


Название темы

Количество

часов

1

Повторение материала 7-9 классов. Числовые функции

12

3

Аксиомы стереометрии и их следствия

4

4

Тригонометрические функции

23

5

Параллельность прямых и плоскостей

19

6

Тригонометрические уравнения и неравенства

10

7

Перпендикулярность прямых и плоскостей

17

8

Преобразование тригонометрических выражений

24

9

Многогранники

12

10

Производная

25

11

Векторы в пространстве

9

12

Действительные числа

10

13

Комплексные числа

9

14

Комбинаторика и вероятность

8

15

Итоговое повторение

22


Итого

204

































Календарно-тематическое планирование

6 часов в неделю (204 часа)


п/п

Изучаемая тема

Кол-во

часов

К/р

Календарь

1-6

Повторение

6


Сентябрь 1-4


Числовые функции

6



7

Определение числовой функции и способы ее задания

1


7

8-9

Свойства функции

2


7,8

10

Периодические функции

1


9

11

Обратная функция

1


10

12

Контрольная работа №1 «Числовые функции»

1

1

11


«Введение (аксиомы стереометрии и их следствия) 4 часа

4



13

Предмет стереометрии. Аксиомы стереометрии.

Некоторые следствия из аксиом

1


14

14-16

Решение задач на применение аксиом стереометрии и их следствий.

3


14,15,16


Тригонометрические функции 23 часа

23



17-18

Числовая окружность

2


17,18

19-20

Числовая окружность на координатной плоскости

2


21,21

21-23

Синус и косинус. Тангенс и котангенс

3


22,23,24

24-25

Тригонометрические функции числового аргумента

2


25,28

26

Тригонометрические функции углового аргумента

1


28

27-28

Функции y= sin x, y= cos x, их свойства и графики

2


29,30

29

Контрольная работа №2 «Тригонометрические функции»

1

2

Октябрь 1

30-31

Построение графика функции y=mf(x)

2


2,5

32-33

Построение графика функции y=f(kx)

2


5,6

34

График гармонического колебания

1


7

35-36

Функции

2


8,9

37-38

Обратные тригонометрические функции

2


12,12

39

Обратные тригонометрические функции

1


13


Параллельность прямых и плоскостей 19 часов

19



40

Параллельные прямые в пространстве. Параллельность трех прямых

1


14

41

Параллельность прямой и плоскости

1


15

42-43

Решение задач по теме «Параллельность прямой и плоскости»

2


16,19

44

Скрещивающиеся прямые.

1


19

45

Углы с сонаправленными сторонами. Угол между прямыми

1


20

46

Решение задач на нахождение угла между прямыми

1


21

47

Контрольная работа №3

«Взаимное расположение прямых в пространстве»

1

3

22

48

Решение задач на нахождение угла между прямыми

1


23

49-50

Параллельность плоскостей

2


26,26

51

Тетраэдр

1


27

52

Параллелепипед

1


28

53-54

Задачи на построение сечений

2


29,30

55-56

Решение задач

2


Ноябрь 9,9

57-58

Контрольная работа №4 «Параллельность плоскостей»

2

4

10,11


Тригонометрические уравнения 10 часов

10



59-61

Простейшие тригонометрические уравнения и неравенства

3


12,13,16

62-64

Методы решения тригонометрических уравнений

3


16,17,18

65-66

Решение тригонометрических уравнений

2


19,20

67-68

Контрольная работа №5

«Простейшие тригонометрические уравнения»

2

5

23,23


Перпендикулярность прямых и плоскостей 17часов

17



69

Перпендикулярные прямые в пространстве

Параллельные прямые перпендикулярные к плоскости

1


24

70

Признак перпендикулярности прямой и плоскости

1


25

71

Теорема о прямой, перпендикулярной плоскости

1


26

72-73

Решение задач по теме

«Перпендикулярность прямой и плоскости»

2


27,30

74

Расстояние от точки до плоскости. Теорема о трех перпендикулярах

1


30

75

Угол между прямой и плоскостью

1


Декабрь 1

76-77

Решение задач на применение теоремы о трех перпендикулярах, на нахождение расстояния от точки до плоскости, угла между прямой и плоскостью

2


2,3

78

Двугранный угол

1


4

79

Признак перпендикулярности двух плоскостей

1


7

80

Прямоугольный параллелепипед

1


7

81-82

Решение задач по теме

«Перпендикулярность плоскостей»

2


8,9

83-84

Контрольная работа №6

«Перпендикулярность прямых и плоскостей»

2

6

10,11

85

Решение задач по теме

«Перпендикулярность плоскостей»

1


14


Преобразование тригонометрических

выражений 24 часа


24


14,15

86-87

Синус и косинус суммы и разности аргумента

2


14,15

88-91

Полугодовая контрольная работа

4


16,17,18,21

92-93

Тангенс суммы и разности аргументов

2


21,22

94-95

Формулы приведения

2


23,24

96

Формулы двойного аргумента. Формулы понижения

1


25

97-98

Формулы двойного аргумента. Формулы понижения степени

2


Январь 11,11

99-101

Преобразование суммы тригонометрических функций в произведение

3


12,13,14

102-103

Преобразование произведения тригонометрических функций в сумму

2


15,18

104

Преобразование выражения

1


18

105-107

Методы решения тригонометрических уравнений

3


19,20,21

108-109

Контрольная работа №7

«Преобразование тригонометрических выражений»

2

7

22,25


Многогранники 12 часов

12



110

Понятие многогранника. Призма

1


25

111

Площадь поверхности призмы

1


26

112-114

Решение задач на нахождение поверхности призмы

3


27,28,29

115

Пирамида. Правильная пирамида

1


Февраль 1

116

Площадь поверхности пирамиды

1


1

117

Усеченная пирамида

1


2

118

Решение задач по теме «Пирамида»

1


3

119

Симметрия в пространстве

1


4

120

Понятие правильного многогранника. Элементы симметрии правильных многогранников

1


5

121

Контрольная работа №8 «Многогранники»

1

8

8


Производная 25 часов

25



122

Числовые последовательности

1


8

123-124

Предел числовой последовательности

2


9,10

125-126

Предел функции

2


12,11

127-128

Определение производной

2


15,15

129-130

Вычисление производных

2


16,17

131-132

Дифференцирование сложной функции

Дифференцирование обратной функции

2


18,19

133

Уравнение касательной к графику функции

1


22

134-135

Контрольная работа №9 «Производная»

2

9

22,23

136-138

Применение производной для исследования функций

3


24,25,26

139-140

Построение графиков функции

2


29,29

141-144

Применение производной для отыскания наибольших и наименьших значений величин

4


Март 1,2,2,3,4

145-146

Контрольная работа №10 «Применение производной»

2

10

7,7


Векторы в пространстве 8 часов

9



147

Понятие вектора. Равенство векторов

1


8

148

Сложение и вычитание векторов. Сумма нескольких векторов. Умножение вектора на число

1


9

149

Компланарные векторы. Правило параллелепипеда

1


10

150-151

Разложение вектора по трем некомпланарным векторам

2


11,14

152

Решение задач по теме «Векторы»

2


14,15

153-154

Решение задач по теме «Векторы»

1


16

155

Контрольная работа №11 «Векторы»

1

11

17


Действительные числа. 10 часов.

10



156

Натуральные и целые числа. Делимость чисел

1


18

157-158

Рациональные числа. Иррациональные числа

2


28,28

159-160

Множество действительных чисел

2


29,30

161-162

Модуль действительного числа

2


31

Апрель 1

163-164

Метод математической индукции

2


4,4

165

Контрольная работа № 12 онтрольная работа №12

ние 10 «Сравнения«Действительные числа»

1

12

5


Комплексные числа 9 часов

9



166-167

Комплексные числа и арифметические

операции над ними

2


6,7

168

Комплексные числа и координатная плоскость

1


8

169-170

Тригонометрическая форма записи комплексного числа

2


11,11

171

Комплексные числа и квадратные уравнения

1


12

172-173

Возведение комплексного числа в степень. Извлечение кубического корня из комплексного числа

2


13,14

174

Контрольная работа №13 «Комплексные числа»

1

13

15


Комбинаторика и вероятность 8 часов

8



175-176

Правило умножения. Комбинаторные задачи. Перестановки и факториалы

2


18,18

177-178

Случайные события и их вероятности

2


19,20

179-181

Решение задач по теории вероятности

3


21,22,25

182

Контрольная работа №14 «Вероятность»

1

14

25


Обобщающее повторение

16



183-184

Тригонометрические функции

2


26,27

185-186

Преобразование тригонометрических выражений

2


28,29

187-188

Тригонометрические выражения

2


Май 2,2

189-190

Тригонометрические неравенства, уравнения

2


4,3

191-192

Итоговая контрольная работа по

математике в форме ЕГЭ

2

15

5,6

193-194

Производная

2


9,9

195-196

Нахождение расстояний от точки до прямой, до плоскости

2


10,11

197-198

Нахождение углов

2


12,13

199-204

Повторение (из низ 3 часа из геометри)

6


16,16,17,18,19,20


ИТОГО

204





Основное содержание курса


Распределение учебных часов по главам.

В данной программе главы «Действительные числа» и «Комплексные числа» перенесены на конец учебного года. Это связано с подготовкой к будущему экзамену.

Курсивом в тематическом планировании выделен материал, который подлежит изучению, но не включается в Требования к уровню подготовки выпускников. Подчеркиванием выделен материал, содержащийся в Федеральном компоненте государственных образовательных стандартов среднего (полного) общего образования, но отсутствующий в учебнике А.Г. Мордковича и др. «Алгебра и начала анализа», 10 класс, М. «Мнемозина», 2014 год.

Глава 2. Числовые функции. 6 часов.

§7. Определение числовой функции и способы ее задания.

Функции. Область определения и множество значений. График функции. Построение графиков функций, заданных различными способами.

§17. Построение графика функции y = mf(x).

§18. Построение графика функции y = f(kx).

Преобразование графиков: параллельный перенос, симметрия относительно осей координат, симметрия относительно начала координат, симметрия относительно прямой y = x. Растяжение и сжатие вдоль осей координат. Построение графиков с модулем.

§8. Свойства функций.

Свойства функций: монотонность, четность и нечетность, выпуклость, ограниченность, непрерывность. Графическая интерпретация. Примеры функциональных зависимостей в реальных процессах и явлениях.

§9. Периодические функции.

Периодичность функций.

§10. Обратная функция.

Сложная функция (композиция функций). Взаимно обратные функции. Область определения и область значений обратной функции. График обратной функции. Нахождение функции, обратной данной.Контрольная работа №2

Тема 1. «Введение (аксиомы стереометрии и их следствия)» 4часа

Представление раздела геометрии – стереометрии. Основные понятия стереометрии. Аксиомы стереометрии и их следствия. Многогранники: куб, параллелепипед, прямоугольный параллелепипед, призма, прямая призма, правильная призма, пирамида, правильная пирамида. Моделирование многогранников из разверток и с помощью геометрического конструктора.

Основная цель – ознакомить учащихся с основными свойствами и способами задания плоскости на базе групп аксиом стереометрии и их следствий; сформировать представления учащихся об основных понятиях и аксиомах стереометрии, познакомить с основными пространственными фигурами и моделированием многогранников.

Особенностью учебника является раннее введение основных пространственных фигур, в том числе, многогранников. Даются несколько способов изготовления моделей многогранников из разверток и геометрического конструктора. Моделирование многогранников служит важным фактором развития пространственных представлений учащихся.

Глава 3. Тригонометрические функции. 23 часа.

§11. Числовая окружность.

§12. Числовая окружность на координатной плоскости.

§13. Синус и косинус. Тангенс и котангенс.

Синус, косинус, тангенс, котангенс произвольного угла. Радианная мера угла.

§14. Тригонометрические функции числового аргумента.

Синус, косинус, тангенс, котангенс числа. Основные тригонометрические тождества.

§15. Тригонометрические функции углового аргумента.

§16. Функции y = sin x, y = cos x, их свойства и графики, периодичность, основной период.

Контрольная работа №3.

§19. График гармонического колебания.

§20. Функции y = tg x, y = ctg x, их свойства и графики.

§21. Обратные тригонометрические функции, их свойства и графики.

Тема 2. «Параллельность прямых и плоскостей» 19 часов.

Пересекающиеся, параллельные и скрещивающиеся прямые в пространстве. Классификация взаимного расположения двух прямых в пространстве. Признак скрещивающихся прямых. Параллельность прямой и плоскости в пространстве. Классификация взаимного расположения прямой и плоскости. Признак параллельности прямой и плоскости. Параллельность двух плоскостей. Классификация взаимного расположения двух плоскостей. Признак параллельности двух плоскостей. Признаки параллельности двух прямых в пространстве.

Основная цель – дать учащимся систематические знания о параллельности прямых и плоскостей в пространстве; сформировать представления учащихся о понятии параллельности и о взаимном расположении прямых и плоскостей в пространстве, систематически изучить свойства параллельных прямых и плоскостей, познакомить с понятиями вектора, параллельного переноса, параллельного проектирования и научить изображать пространственные фигуры на плоскости в параллельной проекции.

В данной теме обобщаются известные из планиметрии сведения о параллельных прямых. Большую помощь при иллюстрации свойств параллельности и при решении задач могут оказать модели многогранников.

Здесь же учащиеся знакомятся с методом изображения пространственных фигур, основанном на параллельном проектировании, получают необходимые практические навыки по изображению пространственных фигур на плоскости. Для углубленного изучения могут служить задачи на построение сечений многогранников плоскостью.

Глава 4. Тригонометрические уравнения. 10 часов

§22. Методы решения тригонометрических уравнений: преобразование суммы в произведение и обратно, метод равенства одноименных функций, метод понижения степени.

Нестандартные методы решения тригонометрических уравнений.

Простейшие тригонометрические неравенства. Методы решения тригонометрических неравенств.

Контрольная работа №5.

Тема 3. «Перпендикулярность прямых и плоскостей» 17 часов

Угол между прямыми в пространстве. Перпендикулярность прямых. Перпендикулярность прямой и плоскости. Признак перпендикулярности прямой и плоскости. Ортогональное проектирование. Перпендикуляр и наклонная. Угол между прямой и плоскостью. Двугранный угол. Линейный угол двугранного угла. Перпендикулярность плоскостей. Признак перпендикулярности двух плоскостей. Расстояние между точками, прямыми и плоскостями.

Основная цель – дать учащимся систематические знания о перпендикулярности прямых и плоскостей в пространстве; ввести понятие углов между прямыми и плоскостями; сформировать представления учащихся о понятиях перпендикулярности прямых и плоскостей в пространстве, систематически изучить свойства перпендикулярных прямых и плоскостей, познакомить с понятием центрального проектирования и научить изображать пространственные фигуры на плоскости в центральной проекции.

В данной теме обобщаются известные из планиметрии сведения о перпендикулярных прямых. Большую помощь при иллюстрации свойств перпендикулярности и при решении задач могут оказать модели многогранников.

В качестве дополнительного материала учащиеся знакомятся с методом изображения пространственных фигур, основанном на центральном проектировании. Они узнают, что центральное проектирование используется не только в геометрии, но и в живописи, фотографии и т.д., что восприятие человеком окружающих предметов посредством зрения осуществляется по законам центрального проектирования. Учащиеся получают необходимые практические навыки по изображению пространственных фигур на плоскости в центральной проекции.

Глава 5. Преобразование тригонометрических выражений. 24 часа

§24. Синус и косинус суммы и разности аргументов.

§25. Тангенс суммы и разности аргументов.

§26. Формулы приведения.

§27. Формулы двойного аргумента. Формулы понижения степени.

Синус и косинус двойного угла. Формулы половинного угла. Выражение тригонометрических функций через тангенс половинного аргумента.

§28. Преобразование суммы тригонометрических функций в произведение.

§29. Преобразование произведения тригонометрических функций в сумму. Преобразование тригонометрических выражений.

§30. Преобразование выражения Asin x + Bcos x к виду Csin (x + t)

§31. Простейшие тригонометрические уравнения, отбор корней в тригонометрических уравнениях .Методы решения тригонометрических уравнений: метод замены, однородные, метод вспомогательного угла.

Контрольная работа №4.

Тема 4. «Многогранники» 12 часов

Многогранные углы. Выпуклые многогранники и их свойства. Правильные многогранники.

Основная цель – сформировать у учащихся представление об основных видах многогранников и их свойствах; рассмотреть правильные многогранники; познакомить учащихся с понятиями многогранного угла и выпуклого многогранника, рассмотреть теорему Эйлера и ее приложения к решению задач, сформировать представления о правильных, полуправильных и звездчатых многогранниках, показать проявления многогранников в природе в виде кристаллов.

Среди пространственных фигур особое значение имеют выпуклые фигуры и, в частности, выпуклые многогранники. Теорема Эйлера о числе вершин, ребер и граней выпуклого многогранника играет важную роль в различных областях математики и ее приложениях. При изучении правильных, полуправильных и звездчатых многогранников следует использовать модели этих многогранников, изготовление которых описано в учебнике, а также графические компьютерные средства.

Глава 6. Производная. 25 часов.

§37. Числовые последовательности

§38. Предел числовой последовательности.

Понятие о пределе последовательности. Существование предела монотонной ограниченной последовательности. Длина окружности и площадь круга как пределы последовательностей. Бесконечно убывающая геометрическая прогрессия и ее сумма. Теоремы о пределах последовательностей. Переход к пределам в неравенствах.

§39. Предел функции.

Предел функции на бесконечность, правила вычисления пределов на бесконечность. Горизонтальные асимптоты. Предел функции в точке, правила вычисления предела функции в точке. Вертикальные и наклонные асимптоты. Понятие о непрерывности функции. Основные теоремы о непрерывных функциях.

§40. Определение производной.

Понятие о производной функции, физический и геометрический смысл производной.

§41. Вычисление производных.

Производные суммы, разности, произведения и частного. Производные основных элементарных функций.

§42. Дифференцирование сложной функции. Дифференцирование обратной функции.

Производные сложной и обратной функции.

§43. Уравнение касательной к графику функции.

Контрольная работа №6.

§44. Применение производной для исследования функций.

Применение производных при решении уравнений и неравенств.

§45. Построение графиков функций.

Применение производной к исследованию функций и построению графиков.

Вторая производная и ее физический смысл.

§46. Применение производной для отыскания наибольших и наименьших значений величин.

Использование производных при решении текстовых, физических и геометрических задач, нахождении наибольших и наименьших значений. Примеры использования производной для нахождения решения в прикладных, в том числе социально-экономических, задачах.

Контрольная работа №7.

Тема 5. «Векторы в пространстве» 9 часов

Векторы в пространстве. Коллинеарные и компланарные векторы. Параллельный перенос. Параллельное проектирование и его свойства. Параллельные проекции плоских фигур. Изображение пространственных фигур на плоскости. Сечения многогранников. Исторические сведения.

Основная цель – обобщить изученный в базовой школе материал о векторах на плоскости; сформировать у учащихся понятие вектора в пространстве; рассмотреть основные операции над векторами.

Особое внимание уделяется решению задач, т.к. при этом учащиеся овладевают векторным методом.

Глава 1. Действительные числа. 10 часов

§1. Натуральные и целые числа.

Делимость целых чисел. Деление с остатком. Сравнения. Признаки делимости. Простые и составные числа. НОД. НОК. Основная теорема алгебры Решение задач с целочисленными неизвестными.

§2. Рациональные числа.

Перевод бесконечной периодической десятичной дроби в обыкновенную

§3. Иррациональные числа.

Понятие иррационального числа

§4. Множество действительных чисел

Действительные числа. Числовая прямая. Числовые неравенства и их свойства. Числовые промежутки. Аксиоматика действительных чисел. Доказательства неравенств. Неравенство о среднем арифметическом и среднем геометрическом двух чисел.

§5. Модуль действительного числа.

Контрольная работа №1.

§6. Метод математической индукции.

Глава 7. Комплексные числа. 9 часов

§32. Комплексные числа и арифметические операции над ними.

Действительная и мнимая часть. Комплексно сопряженные числа. Модуль и аргумент комплексного числа.

§33. Комплексные числа и координатная плоскость.

Геометрическая интерпретация комплексных чисел.

§34. Тригонометрическая форма записи комплексного числа.

Арифметические действия над комплексными числами в разных формах записи.

§35. Комплексные числа и квадратные уравнения.

§36. Возведение комплексного числа в степень. Извлечение кубического корня из комплексного числа.

Возведение в натуральную степень (формула Муавра). Основная теорема алгебры.

Контрольная работа №8

Глава 8. Комбинаторика и вероятность. 8 часов

§47. Правило умножения. Комбинаторные задачи. Перестановки и факториалы.

Формулы числа перестановок, сочетаний, размещений. Решение комбинаторных задач.

§48. Выбор нескольких элементов. Биномиальные коэффициенты.

Формула бинома Ньютона. Свойства биномиальных коэффициентов. Треугольник Паскаля.

§49. Случайные события и их вероятность.

Элементарные и сложные события. Рассмотрение случаев и вероятность суммы несовместных событий, вероятность противоположного события. Понятие о независимости событий. Вероятность и статистическая частота наступления события. Решение практических задач с применением вероятностных методов.

Табличное и графическое представление данных. Числовые характеристики рядов данных.

Контрольная работа №9 и итоговая контрольная работа №10

Тема 6. «Повторение» 22 часа.

Основная цель – повторить и обобщить материал, изученный в 10 классе.

Итоговая административная работа -1(2 часа)



































Требования к уровню подготовки учащихся 10 «Э» класса


В результате изучения математики на профильном уровне ученик должен

знать / понимать:

значение математической науки для решения задач, возникающих в теории и практике; широту и ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

идеи расширения числовых множеств как способа построения нового математического аппарата для решения практических задач и внутренних задач математики;

значение идей, методов и результатов алгебры и математического анализа для построения моделей реальных процессов и ситуаций;

универсальный характер законов логики математических рассуждений, их применимость в различных областях человеческой деятельности;

различие требований, предъявляемых к доказательствам в математике, естественных, социально-экономических и гуманитарных науках, на практике;

вероятностный характер различных процессов и закономерностей окружающего мира.

Числовые и буквенные выражения

уметь:

выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; пользоваться оценкой и прикидкой при практических расчетах;

применять понятия, связанные с делимостью целых чисел при решении математических задач;

выполнять действия с комплексными числами, пользоваться геометрической интерпретацией комплексных чисел, в простейших случаях находить комплексные корни уравнений с действительными коэффициентами;

проводить преобразование числовых и буквенных выражений.

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

практических расчетов по формулам, используя при необходимости справочные материалы и простейшие вычислительные устройства.

Функции и графики

уметь:

определять значение функции по значению аргумента при различных способах задания функции;

строить графики изученных функций, выполнять преобразование графиков;

описывать по графику и по формуле поведение и свойства функций;

решать уравнения, системы уравнений, неравенства; используя свойства функций и их графические представления;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

описания и исследования с помощью функций реальных зависимостей, представления их графически; интерпретации графиков реальных процессов.

Начала математического анализа

уметь:

находить сумму бесконечно убывающей геометрической прогрессии;

вычислять производные элементарных функций, применяя правила вычисления производных, используя справочные материалы;

исследовать функции и строить их графики с помощью производной;

решать задачи с применением уравнения касательной к графику функции;

решать задачи на нахождение наибольшего и наименьшего значения функции на отрезке;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

решения прикладных задач, в том числе на наибольшие и наименьшие значения с применением аппарата математического анализа.

Уравнения и неравенства

уметь:

решать тригонометрические уравнения;

доказывать несложные неравенства;

находить приближенные решения уравнений и их систем, используя графический метод;

решать уравнения, неравенства и системы с применением графических представлений, свойств функций, производной;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

построения и исследования простейших математических моделей.

Элементы комбинаторики, статистики и теории вероятностей

уметь:

решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул, треугольника Паскаля; вычислять коэффициенты бинома Ньютона по формуле и с использованием треугольника Паскаля;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

анализа реальных числовых данных, представленных в виде диаграмм, графиков; для анализа информации статистического характера.

В результате изучения геометрии на базовом уровне ученик должен

знать/понимать

  • значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

  • значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;

  • универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;

уметь:

  • распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;

  • описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;

  • анализировать в простейших случаях взаимное расположение объектов в пространстве;

  • изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;

  • строить простейшие сечения куба, призмы, пирамиды;

  • решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);

  • использовать при решении стереометрических задач планиметрические факты и методы;

  • проводить доказательные рассуждения в ходе решения задач;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;

  • вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства;

владеть компетенциями:

  • учебно-познавательной, ценностно-ориентационной, рефлексивной, коммуникативной, информационной, социально-трудовой.











































Список рекомендуемой учебно-методической литературы


  1. А.Г. Мордкович, П.В. Семенов. Алгебра и начала анализа (в 2-х частях). Ч.1 2014 г: Учебник.

  2. А.Г Мордкович и др. Алгебра и начала анализа. Ч.2,2014г: Задачник.

  3. А.Г Мордкович и др. Алгебра и начала анализа. Контрольные работы.

  4. А.Г. Мордкович, П.В. Семенов. Методическое пособие для учителя.

  5. Л.А. Александрова. Алгебра и начала анализа. Самостоятельные работы. /под ред. А.Г. Мордковича.

  6. Л.О. Денищева, Т.А. Корешкова. Алгебра и начала анализа. Тематические тесты и зачеты /под ред. А.Г. Мордковича.

  7. Л.С. Атанасян и др. «Геометрия 10-11» Учебник, 16-е изд., доп. М. «Просвещение», 2014 год.

8. Л.С. Атанасян и др. «Геометрия, 10-11». Дидактические материалы,

М. «Просвещение», 2010 год.

9. Ю.А Глазков, Л.И. Боженкова Тесты по геометрии к учебнику

Л.С. Атанасяна и др « Геометрия. 10-11 классы»


































Организация текущего и промежуточного контроля знаний



урока

Тема

Кол-во

часов

Календарь

12

Контрольная работа №1 «Числовые функции»

1

13 сентябрь

29

Контрольная работа №2 «Тригонометрические функции»

1

2

октябрь

47

Контрольная работа № 3 «Взаимное расположение прямых в пространстве»

1

23 октября

57-58

Контрольная работа №4 «Параллельность плоскостей»

2

11,12

67-68

Контрольная работа №5 «Простейшие тригонометрические уравнения»

2

24,24

ноября

83-84

Контрольная работа №6 «Перпендикулярность прямых и плоскостей»

2

11,13

декабря

88-91

Полугодовая контрольная работа

4

17,18,20,22

108-109

Контрольная работа №7 «Преобразование тригонометрических выражений»

2

24,26

января

121

Контрольная работа №8 «Многогранники»

1

9 февраля

134-135

Контрольная работа №9 «Производная»

2

25,26

февраль

145-146

Контрольная работа №10 «Применение производной»

2

12,14

март

155

Контрольная работа №11 «Векторы»

1

31 март

165

Контрольная работа №12 «Действительные числа»


13апрель

174

Контрольная работа №13 «Комплексные числа»

1

22апрель

182

Контрольная работа №14 «Вероятность»

1

4 май

191-192

Итоговая контрольная работа по математике за курс 10 класса

2

14,14 май











































Материально-техническое и информационно-техническое обеспечение

Классная комната имеет три классные доски, 15 парт, 30 стульев с установкой под необходимый рост учащегося, согласно нормам Сан Пин. Кабинет оснащен проектором, компьютером, лазерным принтером, копировальным аппаратом, экраном, имеются колонки.

Имеется библиотечка методической литературы; учебные таблицы;

модели геометрических тел. Огнетушитель.