Контрольная работа для 11 класса в формате ЕГЭ

Автор публикации:

Дата публикации:

Краткое описание: ...


Административная контрольная работа . Тест. (осень) 11 класс.

Вариант № 3247233


Часть 1

B 1. Сырок стоит 7 руб­лей 20 ко­пе­ек. Какое наи­боль­шее число сыр­ков можно ку­пить на 60 руб­лей?


B 2. Цена на элек­три­че­ский чай­ник была по­вы­ше­на на 16% и со­ста­ви­ла 3480 руб­лей. Сколь­ко руб­лей стоил чай­ник до по­вы­ше­ния цены?

 

B 3. На диа­грам­ме по­ка­за­на сред­не­ме­сяч­ная тем­пе­ра­ту­ра воз­ду­ха в Горь­ком за каж­дый месяц 1994 года. По го­ри­зон­та­ли ука­зы­ва­ют­ся ме­ся­цы, по вер­ти­ка­ли — тем­пе­ра­ту­ра в гра­ду­сах Цель­сия. Опре­де­ли­те по диа­грам­ме наи­мень­шую сред­не­ме­сяч­ную тем­пе­ра­ту­ру в 1994 году. Ответ дайте в гра­ду­сах Цель­сия.

[pic]


B [pic]  4. Из пунк­та А в пункт D ведут три до­ро­ги. Через пункт В едет гру­зо­вик со сред­ней ско­ро­стью 35 км/ч, через пункт С едет ав­то­бус со сред­ней ско­ро­стью 30 км/ч. Тре­тья до­ро­га — без про­ме­жу­точ­ных пунк­тов, и по ней дви­жет­ся лег­ко­вой ав­то­мо­биль со сред­ней ско­ро­стью 40 км/ч. На ри­сун­ке по­ка­за­на схема дорог и рас­сто­я­ние между пунк­та­ми по до­ро­гам, вы­ра­жен­ное в ки­ло­мет­рах.

В [pic] се три ав­то­мо­би­ля од­но­вре­мен­но вы­еха­ли из А. Какой ав­то­мо­биль до­брал­ся до D позже дру­гих? В от­ве­те ука­жи­те, сколь­ко часов он на­хо­дил­ся в до­ро­ге.

B 5. Най­ди­те сумму ко­ор­ди­нат век­то­ра [pic] .


B 6. В слу­чай­ном экс­пе­ри­мен­те сим­мет­рич­ную мо­не­ту бро­са­ют два­жды. Най­ди­те ве­ро­ят­ность того, что орел вы­па­дет ровно один раз.

B 7. Най­ди­те ко­рень урав­не­ния [pic] .

[pic]

B 8. В ту­по­уголь­ном тре­уголь­ни­ке [pic] [pic] , вы­со­та [pic] равна 20. Най­ди­те [pic] .


B 9. На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (−11; 3). Най­ди­те про­ме­жут­ки воз­рас­та­ния функ­ции f(x). В от­ве­те ука­жи­те длину наи­боль­ше­го из них.

 

[pic]







Часть 2


B 12. Ско­рость ав­то­мо­би­ля, раз­го­ня­ю­ще­го­ся с места стар­та по пря­мо­ли­ней­но­му от­рез­ку пути дли­ной [pic] км с по­сто­ян­ным уско­ре­ни­ем [pic] км/ч2, вы­чис­ля­ет­ся по фор­му­ле [pic] . Опре­де­ли­те, с какой наи­мень­шей ско­ро­стью будет дви­гать­ся ав­то­мо­биль на рас­сто­я­нии 1 ки­ло­мет­ра от стар­та, если по кон­струк­тив­ным осо­бен­но­стям ав­то­мо­би­ля при­об­ре­та­е­мое им уско­ре­ние не мень­ше 5000 км/ч2. Ответ вы­ра­зи­те в км/ч.


B 14. Пер­вая труба про­пус­ка­ет на 1 литр воды в ми­ну­ту мень­ше, чем вто­рая. Сколь­ко лит­ров воды в ми­ну­ту про­пус­ка­ет вто­рая труба, если ре­зер­ву­ар объ­е­мом 110 лит­ров она за­пол­ня­ет на 1 ми­ну­ту быст­рее, чем пер­вая труба?


B 15. Най­ди­те наи­боль­шее зна­че­ние функ­ции [pic] на от­рез­ке [pic] .





C 1. а) Ре­ши­те урав­не­ние [pic]

б) Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие про­ме­жут­ку [pic]

















Вариант № 3247808


Часть 1

B 1. Вы­пуск­ни­ки 11а по­ку­па­ют бу­ке­ты цве­тов для по­след­не­го звон­ка: из 3 роз каж­до­му учи­те­лю и из 7 роз класс­но­му ру­ко­во­ди­те­лю и ди­рек­то­ру. Они со­би­ра­ют­ся по­да­рить бу­ке­ты 15 учи­те­лям (вклю­чая ди­рек­то­ра и класс­но­го ру­ко­во­ди­те­ля), розы по­ку­па­ют­ся по опто­вой цене 35 руб­лей за штуку. Сколь­ко руб­лей стоят все розы?


B 2. Толь­ко 94% из 27 500 вы­пуск­ни­ков го­ро­да пра­виль­но ре­ши­ли за­да­чу B1. Сколь­ко че­ло­век пра­виль­но ре­ши­ли за­да­чу В1?


B 3. На ри­сун­ке жир­ны­ми точ­ка­ми по­ка­за­на цена пал­ла­дия, уста­нов­лен­ная Цен­тро­бан­ком РФ во все ра­бо­чие дни в ок­тяб­ре 2008 года. По го­ри­зон­та­ли ука­зы­ва­ют­ся числа ме­ся­ца, по вер­ти­ка­ли — цена пал­ла­дия в руб­лях за грамм. Для на­гляд­но­сти жир­ные точки на ри­сун­ке со­еди­не­ны ли­ни­ей. Опре­де­ли­те по ри­сун­ку раз­ность между наи­боль­шей и наи­мень­шей ценой пал­ла­дия за ука­зан­ный пе­ри­од. Ответ дайте в руб­лях за грамм.

[pic]


B 4. Рей­тин­го­вое агент­ство опре­де­ля­ет рей­тинг со­от­но­ше­ния «цена-ка­че­ство» мик­ро­вол­но­вых печей. Рей­тинг вы­чис­ля­ет­ся на ос­но­ве сред­ней цены [pic] и оце­нок функ­ци­о­наль­но­сти [pic] , ка­че­ства [pic] и ди­зай­на [pic] . Каж­дый от­дель­ный по­ка­за­тель оце­ни­ва­ет­ся экс­пер­та­ми по 5-балль­ной шкале це­лы­ми чис­ла­ми от 0 до 4. Ито­го­вый рей­тинг вы­чис­ля­ет­ся по фор­му­ле [pic]

В таб­ли­це даны оцен­ки каж­до­го по­ка­за­те­ля для не­сколь­ких мо­де­лей печей. Опре­де­ли­те, какая мо­дель имеет наи­выс­ший рей­тинг. В ответ за­пи­ши­те зна­че­ние этого рей­тин­га.

B 5. Точки O(0; 0), B(8; 2), C(2; 6) и A яв­ля­ют­ся вер­ши­на­ми па­рал­ле­ло­грам­ма. Най­ди­те ор­ди­на­ту точки A.


B 6. Ве­ро­ят­ность того, что на тесте по био­ло­гии уча­щий­ся О. верно решит боль­ше 11 задач, равна 0,67. Ве­ро­ят­ность того, что О. верно решит боль­ше 10 задач, равна 0,74. Най­ди­те ве­ро­ят­ность того, что О. верно решит ровно 11 задач.

B 7. Най­ди­те ко­рень урав­не­ния [pic] .


B [pic]  8. Сред­няя линия тра­пе­ции равна 7, а одно из ее ос­но­ва­ний боль­ше дру­го­го на 4. Най­ди­те боль­шее ос­но­ва­ние тра­пе­ции.


B [pic]  9. На ри­сун­ке изоб­ражён гра­фик функ­ции y=f(x) и ка­са­тель­ная к нему в точке с абс­цис­сой x0. Най­ди­те зна­че­ние про­из­вод­ной функ­ции f(x) в точке x0.








Часть 2


B 12. Рас­сто­я­ние от на­блю­да­те­ля, на­хо­дя­ще­го­ся на не­боль­шой вы­со­те [pic] ки­ло­мет­ров над землeй, до на­блю­да­е­мой им линии го­ри­зон­та вы­чис­ля­ет­ся по фор­му­ле [pic] , где [pic] (км) — ра­ди­ус Земли. С какой вы­со­ты го­ри­зонт виден на рас­сто­я­нии 28 ки­ло­мет­ров? Ответ вы­ра­зи­те в ки­ло­мет­рах.


B 13. Два ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 2, 4. Диа­го­наль па­рал­ле­ле­пи­пе­да равна 6. Най­ди­те пло­щадь по­верх­но­сти па­рал­ле­ле­пи­пе­да.


B 14. Рас­сто­я­ние между го­ро­да­ми [pic] и [pic] равно 150 км. Из го­ро­да [pic] в город [pic] вы­ехал ав­то­мо­биль, а через 30 минут сле­дом за ним со ско­ро­стью 90 км/ч вы­ехал мо­то­цик­лист, до­гнал ав­то­мо­биль в го­ро­де [pic] и по­вер­нул об­рат­но. Когда он вер­нул­ся в [pic] , ав­то­мо­биль при­был в [pic] . Най­ди­те рас­сто­я­ние от [pic] до [pic] . Ответ дайте в ки­ло­мет­рах.






C 1. а) Ре­ши­те урав­не­ние [pic]

б) Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие про­ме­жут­ку [pic]




















Вариант № 3248198


Часть 1

B 1. Поезд Но­во­си­бирск-Крас­но­ярск от­прав­ля­ет­ся в 15:20, а при­бы­ва­ет в 4:20 на сле­ду­ю­щий день (время мос­ков­ское). Сколь­ко часов поезд на­хо­дит­ся в пути?


B 2. Фут­бол­ка сто­и­ла 800 руб­лей. После сни­же­ния цены она стала сто­ить 680 руб­лей. На сколь­ко про­цен­тов была сни­же­на цена на фут­бол­ку?


B 3. На ри­сун­ке по­ка­за­но из­ме­не­ние тем­пе­ра­ту­ры воз­ду­ха на про­тя­же­нии трех суток. По го­ри­зон­та­ли ука­зы­ва­ет­ся дата и время суток, по вер­ти­ка­ли — зна­че­ние тем­пе­ра­ту­ры в гра­ду­сах Цель­сия. Опре­де­ли­те по ри­сун­ку раз­ность между наи­боль­шей и наи­мень­шей тем­пе­ра­ту­ра­ми воз­ду­ха 16 ок­тяб­ря. Ответ дайте в гра­ду­сах Цель­сия.

[pic]


B 4. Не­за­ви­си­мая экс­перт­ная ла­бо­ра­то­рия опре­де­ля­ет рей­тинг [pic] бы­то­вых при­бо­ров на ос­но­ве ко­эф­фи­ци­ен­та цен­но­сти, рав­но­го 0,01 сред­ней цены [pic] , по­ка­за­те­лей функ­ци­о­наль­но­сти [pic] , ка­че­ства [pic] и ди­зай­на [pic] . Каж­дый из по­ка­за­те­лей оце­ни­ва­ет­ся целым чис­лом от 0 до 4. Ито­го­вый рей­тинг вы­чис­ля­ет­ся по фор­му­ле [pic]

В таб­ли­це даны сред­няя цена и оцен­ки каж­до­го по­ка­за­те­ля для не­сколь­ких мо­де­лей элек­три­че­ских мя­со­ру­бок. Опре­де­ли­те наи­выс­ший рей­тинг пред­став­лен­ных в таб­ли­це мо­де­лей элек­три­че­ских мя­со­ру­бок.

B 5. Най­ди­те длину от­рез­ка, со­еди­ня­ю­ще­го точки A(6; 8) и [pic] (−2; 2).


B 6. В Вол­шеб­ной стра­не бы­ва­ет два типа по­го­ды: хо­ро­шая и от­лич­ная, причём по­го­да, уста­но­вив­шись утром, дер­жит­ся не­из­мен­ной весь день. Из­вест­но, что с ве­ро­ят­но­стью 0,8 по­го­да зав­тра будет такой же, как и се­год­ня. Се­год­ня 3 июля, по­го­да в Вол­шеб­ной стра­не хо­ро­шая. Най­ди­те ве­ро­ят­ность того, что 6 июля в Вол­шеб­ной стра­не будет от­лич­ная по­го­да.


B [pic]  7. Ре­ши­те урав­не­ние [pic] . В от­ве­те на­пи­ши­те наи­мень­ший по­ло­жи­тель­ный ко­рень.


B 8. В тре­уголь­ни­ке [pic] [pic] , угол [pic] равен 90°. Ра­ди­ус опи­сан­ной окруж­но­сти этого тре­уголь­ни­ка равен 5. Най­ди­те [pic] .


B 9. Ма­те­ри­аль­ная точка дви­жет­ся пря­мо­ли­ней­но по за­ко­ну [pic] (где x — рас­сто­я­ние от точки от­сче­та в мет­рах, t — время в се­кун­дах, из­ме­рен­ное с на­ча­ла дви­же­ния). Най­ди­те ее ско­рость в (м/с) в мо­мент вре­ме­ни t = 6 с.

 



Часть 2


B 12. Eмкость вы­со­ко­вольт­но­го кон­ден­са­то­ра в те­ле­ви­зо­ре [pic]  Ф. Па­рал­лель­но с кон­ден­са­то­ром под­ключeн ре­зи­стор с со­про­тив­ле­ни­ем [pic]  Ом. Во время ра­бо­ты те­ле­ви­зо­ра на­пря­же­ние на кон­ден­са­то­ре [pic]  кВ. После вы­клю­че­ния те­ле­ви­зо­ра на­пря­же­ние на кон­ден­са­то­ре убы­ва­ет до зна­че­ния [pic]  (кВ) за время, опре­де­ля­е­мое вы­ра­же­ни­ем [pic] (с), где [pic]  — по­сто­ян­ная. Опре­де­ли­те (в ки­ло­воль­тах), наи­боль­шее воз­мож­ное на­пря­же­ние на кон­ден­са­то­ре, если после вы­клю­че­ния те­ле­ви­зо­ра про­шло не менее 83,2 с?



B 14. Рас­сто­я­ние между при­ста­ня­ми [pic] и [pic] равно 120 км. Из в [pic] по те­че­нию реки от­пра­вил­ся плот, а через час вслед за ним от­пра­ви­лась яхта, ко­то­рая, при­быв в пункт [pic] , тот­час по­вер­ну­ла об­рат­но и воз­вра­ти­лась в [pic] . К этому вре­ме­ни плот про­шел 24 км. Най­ди­те ско­рость яхты в не­по­движ­ной воде, если ско­рость те­че­ния реки равна 2 км/ч. Ответ дайте в км/ч.


B 15. Най­ди­те наи­боль­шее зна­че­ние функ­ции [pic] на от­рез­ке [pic] .


C 1. а) Ре­ши­те урав­не­ние [pic]

б) Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие про­ме­жут­ку [pic]
















Вариант № 3270533


Часть 1

B 1. Спи­до­метр ав­то­мо­би­ля по­ка­зы­ва­ет ско­рость в милях в час. Какую ско­рость (в милях в час) по­ка­зы­ва­ет спи­до­метр, если ав­то­мо­биль дви­жет­ся со ско­ро­стью 36 км в час? (Счи­тай­те, что 1 миля равна 1,6 км.)


B 2. Ма­га­зин за­ку­па­ет цве­точ­ные горш­ки по опто­вой цене 120 руб­лей за штуку и про­да­ет с на­цен­кой 20%. Какое наи­боль­шее число таких горш­ков можно ку­пить в этом ма­га­зи­не на 1000 руб­лей?

[pic]










B 3. В ходе хи­ми­че­ской ре­ак­ции ко­ли­че­ство ис­ход­но­го ве­ще­ства (ре­а­ген­та), ко­то­рое еще не всту­пи­ло в ре­ак­цию, со вре­ме­нем по­сте­пен­но умень­ша­ет­ся. На ри­сун­ке эта за­ви­си­мость пред­став­ле­на гра­фи­ком. На оси абс­цисс от­кла­ды­ва­ет­ся время в ми­ну­тах, про­шед­шее с мо­мен­та на­ча­ла ре­ак­ции, на оси ор­ди­нат – масса остав­ше­го­ся ре­а­ген­та, ко­то­рый еще не всту­пил в ре­ак­цию (в грам­мах). Опре­де­ли­те по гра­фи­ку, сколь­ко грам­мов ре­а­ген­та всту­пи­ло в ре­ак­цию за три ми­ну­ты?


B 4. Ме­бель­ный салон за­клю­ча­ет до­го­во­ры с про­из­во­ди­те­ля­ми ме­бе­ли. В до­го­во­рах ука­зы­ва­ет­ся, какой про­цент от суммы, вы­ру­чен­ной за про­да­жу ме­бе­ли, по­сту­па­ет в доход ме­бель­но­го са­ло­на.

Про­цент от вы­руч­ки,

по­сту­па­ю­щий в доход са­ло­на

При­ме­ча­ния

«Альфа»

6,5 %

Из­де­лия ценой до 20 000 руб.

«Альфа»

2,5 %

Из­де­лия ценой свыше 20 000 руб.

«Бета»

3 %

Все из­де­лия

«Омик­рон»

5 %

Все из­де­лия

В прейс­ку­ран­те при­ве­де­ны цены на че­ты­ре крес­ла-ка­чал­ки. Опре­де­ли­те, про­да­жа ка­ко­го крес­ла-ка­чал­ки наи­бо­лее вы­год­на для са­ло­на. В ответ за­пи­ши­те, сколь­ко руб­лей по­сту­пит в доход са­ло­на от про­да­жи этого крес­ла-ка­чал­ки.

B 5. Най­ди­те тан­генс угла [pic] .


B 6. Ка­ко­ва ве­ро­ят­ность того, что слу­чай­но вы­бран­ное на­ту­раль­ное число от 10 до 19 де­лит­ся на три?

[pic]

B 7. Най­ди­те ко­рень урав­не­ния [pic] .

 

B 8. Чему равен тупой впи­сан­ный угол, опи­ра­ю­щий­ся на хорду, рав­ную ра­ди­у­су окруж­но­сти? Ответ дайте в гра­ду­сах.


B 9. На ри­сун­ке изоб­ражён гра­фик [pic] про­из­вод­ной функ­ции [pic] и во­семь точек на оси абс­цисс: [pic] [pic] [pic] [pic] , [pic] . В сколь­ких из этих точек функ­ция [pic] воз­рас­та­ет?

 

[pic]


Часть 2

B 12. Ско­рость ав­то­мо­би­ля, раз­го­ня­ю­ще­го­ся с места стар­та по пря­мо­ли­ней­но­му от­рез­ку пути дли­ной [pic] км с по­сто­ян­ным уско­ре­ни­ем [pic] км/ч2, вы­чис­ля­ет­ся по фор­му­ле [pic] . Опре­де­ли­те, с какой наи­мень­шей ско­ро­стью будет дви­гать­ся ав­то­мо­биль на рас­сто­я­нии 1 ки­ло­мет­ра от стар­та, если по кон­струк­тив­ным осо­бен­но­стям ав­то­мо­би­ля при­об­ре­та­е­мое им уско­ре­ние не мень­ше 5000 км/ч2. Ответ вы­ра­зи­те в км/ч.


B 14. По морю па­рал­лель­ны­ми кур­са­ми в одном на­прав­ле­нии сле­ду­ют два су­хо­гру­за: пер­вый дли­ной 120 мет­ров, вто­рой – дли­ной 80 мет­ров. Сна­ча­ла вто­рой су­хо­груз от­ста­ет от пер­во­го, и в не­ко­то­рый мо­мент вре­ме­ни рас­сто­я­ние от кормы пер­во­го су­хо­гру­за до носа вто­ро­го со­став­ля­ет 400 мет­ров. Через 12 минут после этого уже пер­вый су­хо­груз от­ста­ет от вто­ро­го так, что рас­сто­я­ние от кормы вто­ро­го су­хо­гру­за до носа пер­во­го равно 600 мет­рам. На сколь­ко ки­ло­мет­ров в час ско­рость пер­во­го су­хо­гру­за мень­ше ско­ро­сти вто­ро­го?


B 15. Най­ди­те наи­мень­шее зна­че­ние функ­ции [pic] на от­рез­ке [pic] .



C 1. а) Ре­ши­те урав­не­ние [pic]

б) Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку [pic]

















Вариант № 3270821


Часть 1

B 1. Так­сист за месяц про­ехал 6000 км. Сто­и­мость 1 литра бен­зи­на — 20 руб­лей. Сред­ний рас­ход бен­зи­на на 100 км со­став­ля­ет 9 лит­ров. Сколь­ко руб­лей по­тра­тил так­сист на бен­зин за этот месяц?


B 2. В об­мен­ном пунк­те 1 грив­на стоит 3 рубля 70 ко­пе­ек. От­ды­ха­ю­щие об­ме­ня­ли рубли на грив­ны и ку­пи­ли 3 кг по­ми­до­ров по цене 4 грив­ны за 1 кг. Во сколь­ко руб­лей обо­шлась им эта по­куп­ка? Ответ округ­ли­те до це­ло­го числа.


B 3. На ри­сун­ке жир­ны­ми точ­ка­ми по­ка­за­на сред­не­су­точ­ная тем­пе­ра­ту­ра воз­ду­ха в Бре­сте каж­дый день с 6 по 19 июля 1981 года. По го­ри­зон­та­ли ука­зы­ва­ют­ся числа ме­ся­ца, по вер­ти­ка­ли — тем­пе­ра­ту­ра в гра­ду­сах Цель­сия. Для на­гляд­но­сти жир­ные точки со­еди­не­ны ли­ни­ей. Опре­де­ли­те по ри­сун­ку, какая была тем­пе­ра­ту­ра 15 июля. Ответ дайте в гра­ду­сах Цель­сия.

  [pic]

 

 










B 4. В таб­ли­це даны та­ри­фы на услу­ги трех фирм такси. Пред­по­ла­га­ет­ся по­езд­ка дли­тель­но­стью 70 минут. Нужно вы­брать фирму, в ко­то­рой заказ будет сто­ить де­шев­ле всего. Сколь­ко руб­лей будет сто­ить этот заказ?

* [pic] Если по­езд­ка про­дол­жа­ет­ся мень­ше ука­зан­но­го вре­ме­ни, она опла­чи­ва­ет­ся по сто­и­мо­сти ми­ни­маль­ной по­езд­ки.


B 5. Пло­щадь пря­мо­уголь­но­го тре­уголь­ни­ка равна 16. Один из его ка­те­тов равен 4. Най­ди­те дру­гой катет.


B 6. В не­ко­то­ром го­ро­де из 5000 по­явив­ших­ся на свет мла­ден­цев 2512 маль­чи­ков. Най­ди­те ча­сто­ту рож­де­ния де­во­чек в этом го­ро­де. Ре­зуль­тат округ­ли­те до ты­сяч­ных.

B [pic]  7. Най­ди­те ко­рень урав­не­ния [pic] .


B 8. Пло­щадь ромба равна 18. Одна из его диа­го­на­лей равна 12. Най­ди­те дру­гую диа­го­наль.


B 9. На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции [pic] . Най­ди­те абс­цис­су точки, в ко­то­рой ка­са­тель­ная к гра­фи­ку [pic] па­рал­лель­на оси абс­цисс или сов­па­да­ет с ней.



[pic]














Часть 2




B 12. При тем­пе­ра­ту­ре [pic] рельс имеет длину [pic]  м. При воз­рас­та­нии тем­пе­ра­ту­ры про­ис­хо­дит теп­ло­вое рас­ши­ре­ние рель­са, и его длина, вы­ра­жен­ная в мет­рах, ме­ня­ет­ся по за­ко­ну [pic] , где [pic]  — ко­эф­фи­ци­ент теп­ло­во­го рас­ши­ре­ния, [pic]  — тем­пе­ра­ту­ра (в гра­ду­сах Цель­сия). При какой тем­пе­ра­ту­ре рельс удли­нит­ся на 7,5 мм? Ответ вы­ра­зи­те в гра­ду­сах Цель­сия.


B 14. От при­ста­ни A к при­ста­ни B от­пра­вил­ся с по­сто­ян­ной ско­ро­стью пер­вый теп­ло­ход, а через 1 час после этого сле­дом за ним со ско­ро­стью на 1 км/ч боль­шей от­пра­вил­ся вто­рой. Рас­сто­я­ние между при­ста­ня­ми равно 110 км. Най­ди­те ско­рость вто­ро­го теп­ло­хо­да, если в пункт B он при­был од­но­вре­мен­но с пер­вым. Ответ дайте в км/ч.

B 15. Най­ди­те наи­боль­шее зна­че­ние функ­ции [pic] на от­рез­ке [pic] .




C 1. а) Ре­ши­те урав­не­ние [pic]

б) Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку [pic]


















Вариант № 3270977


Часть 1

B 1. Сырок стоит 8 руб­лей 20 ко­пе­ек. Какое наи­боль­шее число сыр­ков можно ку­пить на 50 руб­лей?


B 2. Фла­кон шам­пу­ня стоит 160 руб­лей. Какое наи­боль­шее число фла­ко­нов можно ку­пить на 1000 руб­лей во время рас­про­да­жи, когда скид­ка со­став­ля­ет 25% ?


B 3. На ри­сун­ке по­ка­за­но из­ме­не­ние тем­пе­ра­ту­ры воз­ду­ха на про­тя­же­нии трех суток. По го­ри­зон­та­ли ука­зы­ва­ет­ся дата и время суток, по вер­ти­ка­ли — зна­че­ние тем­пе­ра­ту­ры в гра­ду­сах Цель­сия. Опре­де­ли­те по ри­сун­ку раз­ность между наи­боль­шей и наи­мень­шей тем­пе­ра­ту­рой воз­ду­ха 15 июля. Ответ дайте в гра­ду­сах Цель­сия.

[pic]


B 4. Ке­ра­ми­че­ская плит­ка одной и той же тор­го­вой марки вы­пус­ка­ет­ся трёх раз­ных раз­ме­ров. Плит­ки упа­ко­ва­ны в пачки. Поль­зу­ясь дан­ны­ми таб­ли­цы, опре­де­ли­те, в каком слу­чае цена од­но­го квад­рат­но­го метра плит­ки будет наи­мень­шей. 


В ответ за­пи­ши­те най­ден­ную наи­мень­шую цену квад­рат­но­го метра в руб­лях.

 

B 5. Най­ди­те рас­сто­я­ние от точки A с ко­ор­ди­на­та­ми (6; 8) до на­ча­ла ко­ор­ди­нат.


B 6. Стре­лок стре­ля­ет по ми­ше­ни один раз. В слу­чае про­ма­ха стре­лок де­ла­ет вто­рой вы­стрел по той же ми­ше­ни. Ве­ро­ят­ность по­пасть в ми­шень при одном вы­стре­ле равна 0,7. Най­ди­те ве­ро­ят­ность того, что ми­шень будет по­ра­же­на (либо пер­вым, либо вто­рым вы­стре­лом).


B 7. Ре­ши­те урав­не­ние [pic] . В от­ве­те на­пи­ши­те наи­боль­ший от­ри­ца­тель­ный ко­рень.




B [pic]  8. Пе­ри­метр тре­уголь­ни­ка равен 12, а ра­ди­ус впи­сан­ной окруж­но­сти равен 1. Най­ди­те пло­щадь этого тре­уголь­ни­ка.


B 9. Ма­те­ри­аль­ная точка дви­жет­ся пря­мо­ли­ней­но по за­ко­ну [pic] (где x — рас­сто­я­ние от точки от­сче­та в мет­рах, t — время в се­кун­дах, из­ме­рен­ное с на­ча­ла дви­же­ния). Най­ди­те ее ско­рость (в м/с) в мо­мент вре­ме­ни t = 9 с.






Часть 2



B 12. При дви­же­нии ра­ке­ты еe ви­ди­мая для не­по­движ­но­го на­блю­да­те­ля длина, из­ме­ря­е­мая в мет­рах, со­кра­ща­ет­ся по за­ко­ну [pic] , где [pic]  м — длина по­ко­я­щей­ся ра­ке­ты, [pic]  км/с — ско­рость света, а [pic]  — ско­рость ра­ке­ты (в км/с). Ка­ко­ва долж­на быть ми­ни­маль­ная ско­рость ра­ке­ты, чтобы еe на­блю­да­е­мая длина стала не более 68 м? Ответ вы­ра­зи­те в км/с.


B 14. На из­го­тов­ле­ние 475 де­та­лей пер­вый ра­бо­чий тра­тит на 6 часов мень­ше, чем вто­рой ра­бо­чий на из­го­тов­ле­ние 550 таких же де­та­лей. Из­вест­но, что пер­вый ра­бо­чий за час де­ла­ет на 3 де­та­ли боль­ше, чем вто­рой. Сколь­ко де­та­лей в час де­ла­ет пер­вый ра­бо­чий?

B 15. Най­ди­те наи­боль­шее зна­че­ние функ­ции [pic] на от­рез­ке [pic] .





C 1. а) Ре­ши­те урав­не­ние [pic]

б) Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку [pic]



















Вариант № 3298150


Часть 1

B 1. Павел Ива­но­вич купил аме­ри­кан­ский ав­то­мо­биль, спи­до­метр ко­то­ро­го по­ка­зы­ва­ет ско­рость в милях в час. Аме­ри­кан­ская миля равна 1609 м. Ка­ко­ва ско­рость ав­то­мо­би­ля в ки­ло­мет­рах в час, если спи­до­метр по­ка­зы­ва­ет 65 миль в час? Ответ округ­ли­те до це­ло­го числа.

 

B 2. На ав­то­за­прав­ке кли­ент отдал кас­си­ру 1000 руб­лей и залил в бак 28 лит­ров бен­зи­на по цене 28 руб. 50 коп. за литр. Сколь­ко руб­лей сдачи он дол­жен по­лу­чить у кас­си­ра?


B 3. На ри­сун­ке по­ка­за­но из­ме­не­ние тем­пе­ра­ту­ры воз­ду­ха на про­тя­же­нии трех суток. По го­ри­зон­та­ли ука­зы­ва­ет­ся дата и время суток, по вер­ти­ка­ли — зна­че­ние тем­пе­ра­ту­ры в гра­ду­сах Цель­сия. Опре­де­ли­те по ри­сун­ку раз­ность между наи­боль­шей и наи­мень­шей тем­пе­ра­ту­ра­ми воз­ду­ха 16 ок­тяб­ря. Ответ дайте в гра­ду­сах Цель­сия.

[pic]

B 4. Не­за­ви­си­мая экс­перт­ная ла­бо­ра­то­рия опре­де­ля­ет рей­тинг [pic] бы­то­вых при­бо­ров на ос­но­ве ко­эф­фи­ци­ен­та цен­но­сти, рав­но­го 0,01 сред­ней цены [pic] , по­ка­за­те­лей функ­ци­о­наль­но­сти [pic] , ка­че­ства [pic] и ди­зай­на [pic] . Каж­дый из по­ка­за­те­лей оце­ни­ва­ет­ся целым чис­лом от 0 до 4. Ито­го­вый рей­тинг вы­чис­ля­ет­ся по фор­му­ле

[pic]

В таб­ли­це даны сред­няя цена и оцен­ки каж­до­го по­ка­за­те­ля для не­сколь­ких мо­де­лей элек­три­че­ских мя­со­ру­бок. Опре­де­ли­те наи­выс­ший рей­тинг пред­став­лен­ных в таб­ли­це мо­де­лей элек­три­че­ских мя­со­ру­бок.

B [pic]  5. Най­ди­те пло­щадь че­ты­рех­уголь­ни­ка, изоб­ра­жен­но­го на клет­ча­той бу­ма­ге с раз­ме­ром клет­ки 1 см [pic] 1 см (см. рис.). Ответ дайте в квад­рат­ных сан­ти­мет­рах.

 

B 6. В клас­се 26 че­ло­век, среди них два близ­не­ца — Ан­дрей и Сер­гей. Класс слу­чай­ным об­ра­зом делят на две груп­пы по 13 че­ло­век в каж­дой. Най­ди­те ве­ро­ят­ность того, что Ан­дрей и Сер­гей ока­жут­ся в одной груп­пе.


B 7. Ре­ши­те урав­не­ние [pic] . В от­ве­те на­пи­ши­те наи­мень­ший по­ло­жи­тель­ный ко­рень.

[pic]

B 8. Ос­но­ва­ния тра­пе­ции от­но­сят­ся как [pic] , а сред­няя линия равна 5. Най­ди­те мень­шее ос­но­ва­ние.


B 9. Ма­те­ри­аль­ная точка дви­жет­ся пря­мо­ли­ней­но по за­ко­ну [pic] (где x — рас­сто­я­ние от точки от­сче­та в мет­рах, t — время в се­кун­дах, из­ме­рен­ное с на­ча­ла дви­же­ния). Най­ди­те ее ско­рость (в м/с) в мо­мент вре­ме­ни t = 3 с.




Часть 2


B 12.На­хо­дя­щий­ся в воде во­до­лаз­ный ко­ло­кол, со­дер­жа­щий [pic] моля воз­ду­ха при дав­ле­нии [pic] ат­мо­сфе­ры, мед­лен­но опус­ка­ют на дно водоeма. При этом про­ис­хо­дит изо­тер­ми­че­ское сжа­тие воз­ду­ха. Ра­бо­та, со­вер­ша­е­мая водой при сжа­тии воз­ду­ха, опре­де­ля­ет­ся вы­ра­же­ни­ем [pic] (Дж), где [pic] – по­сто­ян­ная, [pic] – тем­пе­ра­ту­ра воз­ду­ха, [pic]  (атм) – на­чаль­ное дав­ле­ние, а [pic] (атм) – ко­неч­ное дав­ле­ние воз­ду­ха в ко­ло­ко­ле. До ка­ко­го наи­боль­ше­го дав­ле­ния [pic] можно сжать воз­дух в ко­ло­ко­ле, если при сжа­тии воз­ду­ха со­вер­ша­ет­ся ра­бо­та не более чем 6900 Дж? Ответ при­ве­ди­те в ат­мо­сфе­рах.


B 14. Кли­ент А. сде­лал вклад в банке в раз­ме­ре 7700 руб­лей. Про­цен­ты по вкла­ду на­чис­ля­ют­ся раз в год и при­бав­ля­ют­ся к те­ку­щей сумме вкла­да. Ровно через год на тех же усло­ви­ях такой же вклад в том же банке сде­лал кли­ент Б. Еще ровно через год кли­ен­ты А. и Б. за­кры­ли вкла­ды и за­бра­ли все на­ко­пив­ши­е­ся день­ги. При этом кли­ент А. по­лу­чил на 847 руб­лей боль­ше кли­ен­та Б. Какой про­цент го­до­вых на­чис­лял банк по этим вкла­дам?


B 15. Най­ди­те точку ми­ни­му­ма функ­ции [pic] .



C 1. а) Ре­ши­те урав­не­ние [pic]

б) Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку [pic]















Вариант № 3305977


Часть 1

B 1. Шо­ко­лад­ка стоит 40 руб­лей. В вос­кре­се­нье в су­пер­мар­ке­те дей­ству­ет спе­ци­аль­ное пред­ло­же­ние: за­пла­тив за две шо­ко­лад­ки, по­ку­па­тель по­лу­ча­ет три (одну в по­да­рок). Сколь­ко шо­ко­ла­док можно по­лу­чить на 320 руб­лей в вос­кре­се­нье?


B 2. В го­ро­де N живет 200 000 жи­те­лей. Среди них 15% детей и под­рост­ков. Среди взрос­лых жи­те­лей 45% не ра­бо­та­ет (пен­си­о­не­ры, сту­ден­ты, до­мо­хо­зяй­ки и т. п.). Сколь­ко взрос­лых жи­те­лей ра­бо­та­ет?


B 3. На ри­сун­ке жир­ны­ми точ­ка­ми по­ка­за­на сред­не­су­точ­ная тем­пе­ра­ту­ра воз­ду­ха в Бре­сте каж­дый день с 6 по 19 июля 1981 года. По го­ри­зон­та­ли ука­зы­ва­ют­ся числа ме­ся­ца, по вер­ти­ка­ли — тем­пе­ра­ту­ра в гра­ду­сах Цель­сия. Для на­гляд­но­сти жир­ные точки со­еди­не­ны ли­ни­ей. Опре­де­ли­те по ри­сун­ку раз­ность между наи­боль­шей и наи­мень­шей сред­не­су­точ­ны­ми тем­пе­ра­ту­ра­ми за ука­зан­ный пе­ри­од. Ответ дайте в гра­ду­сах Цель­сия.

[pic]


B 4. В таб­ли­це даны та­ри­фы на услу­ги трех фирм такси. Пред­по­ла­га­ет­ся по­езд­ка дли­тель­но­стью 70 минут. Нужно вы­брать фирму, в ко­то­рой заказ будет сто­ить де­шев­ле всего. Сколь­ко руб­лей будет сто­ить этот заказ?

* [pic] Если по­езд­ка про­дол­жа­ет­ся мень­ше ука­зан­но­го вре­ме­ни, она опла­чи­ва­ет­ся по сто­и­мо­сти ми­ни­маль­ной по­езд­ки.


B 5. Пря­мая, про­ве­ден­ная па­рал­лель­но бо­ко­вой сто­ро­не тра­пе­ции через конец мень­ше­го ос­но­ва­ния, рав­но­го 4, от­се­ка­ет тре­уголь­ник, пе­ри­метр ко­то­ро­го равен 15. Най­ди­те пе­ри­метр тра­пе­ции.


B 6. В не­ко­то­ром го­ро­де из 5000 по­явив­ших­ся на свет мла­ден­цев 2512 маль­чи­ков. Най­ди­те ча­сто­ту рож­де­ния де­во­чек в этом го­ро­де. Ре­зуль­тат округ­ли­те до ты­сяч­ных.

B [pic]  7. Ре­ши­те урав­не­ние [pic] .


B 8. Один из внеш­них углов тре­уголь­ни­ка равен [pic] . Углы, не смеж­ные с дан­ным внеш­ним углом, от­но­сят­ся как [pic] . Най­ди­те наи­боль­ший из них. Ответ дайте в гра­ду­сах.


B 9. На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (−7; 4). Най­ди­те про­ме­жут­ки воз­рас­та­ния функ­ции f(x). В от­ве­те ука­жи­те сумму целых точек, вхо­дя­щих в эти про­ме­жут­ки.

[pic]



Часть 2


B 12. Рас­сто­я­ние от на­блю­да­те­ля, на­хо­дя­ще­го­ся на не­боль­шой вы­со­те [pic]  м над землeй, вы­ра­жен­ное в ки­ло­мет­рах, до на­блю­да­е­мой им линии го­ри­зон­та вы­чис­ля­ет­ся по фор­му­ле [pic] , где [pic]  км — ра­ди­ус Земли. На какой наи­мень­шей вы­со­те сле­ду­ет рас­по­ла­гать­ся на­блю­да­те­лю, чтобы он видел го­ри­зонт на рас­сто­я­нии не менее 8 ки­ло­мет­ров? Ответ вы­ра­зи­те в мет­рах.


B 14. На из­го­тов­ле­ние 99 де­та­лей пер­вый ра­бо­чий тра­тит на 2 часа мень­ше, чем вто­рой ра­бо­чий на из­го­тов­ле­ние 110 таких же де­та­лей. Из­вест­но, что пер­вый ра­бо­чий за час де­ла­ет на 1 де­таль боль­ше, чем вто­рой. Сколь­ко де­та­лей в час де­ла­ет вто­рой ра­бо­чий?

B 15. Най­ди­те точку мак­си­му­ма функ­ции [pic] .



C 1. а) Ре­ши­те урав­не­ние [pic]

б) Ука­жи­те корни, при­над­ле­жа­щие от­рез­ку [pic]














Вариант № 3308277


Часть 1


B 1. Шо­ко­лад­ка стоит 35 руб­лей. В вос­кре­се­нье в су­пер­мар­ке­те дей­ству­ет спе­ци­аль­ное пред­ло­же­ние: за­пла­тив за две шо­ко­лад­ки, по­ку­па­тель по­лу­ча­ет три (одну в по­да­рок). Сколь­ко шо­ко­ла­док можно по­лу­чить на 200 руб­лей в вос­кре­се­нье?


B 2. Для по­крас­ки 1 м2 по­тол­ка тре­бу­ет­ся 240 г крас­ки. Крас­ка про­да­ет­ся в бан­ках по 2,5 кг. Сколь­ко банок крас­ки нужно ку­пить для по­крас­ки по­тол­ка пло­ща­дью 50 м2?

[pic]











B 3. На гра­фи­ке по­ка­зан про­цесс разо­гре­ва дви­га­те­ля лег­ко­во­го ав­то­мо­би­ля. На оси абс­цисс от­кла­ды­ва­ет­ся время в ми­ну­тах, про­шед­шее от за­пус­ка дви­га­те­ля, на оси ор­ди­нат — тем­пе­ра­ту­ра дви­га­те­ля в гра­ду­сах Цель­сия. Опре­де­ли­те по гра­фи­ку, на сколь­ко гра­ду­сов на­гре­ет­ся дви­га­тель с тре­тьей по седь­мую ми­ну­ту разо­гре­ва.


B 4. Для стро­и­тель­ства га­ра­жа можно ис­поль­зо­вать один из двух типов фун­да­мен­та: бе­тон­ный или фун­да­мент из пе­нобло­ков. Для фун­да­мен­та из пе­нобло­ков не­об­хо­ди­мо 2 ку­бо­мет­ра пе­нобло­ков и 4 мешка це­мен­та. Для бе­тон­но­го фун­да­мен­та не­об­хо­ди­мо 2 тонны щебня и 20 меш­ков це­мен­та. Ку­бо­метр пе­нобло­ков стоит 2450 руб­лей, ще­бень стоит 620 руб­лей за тонну, а мешок це­мен­та стоит 230 руб­лей. Сколь­ко руб­лей будет сто­ить ма­те­ри­ал, если вы­брать наи­бо­лее де­ше­вый ва­ри­ант?

[pic]

B 5. На клет­ча­той бу­ма­ге на­ри­со­ва­но два круга. Пло­щадь внут­рен­не­го круга равна 1. Най­ди­те пло­щадь за­штри­хо­ван­ной фи­гу­ры.

 

B 6. Стре­лок стре­ля­ет по ми­ше­ни один раз. В слу­чае про­ма­ха стре­лок де­ла­ет вто­рой вы­стрел по той же ми­ше­ни. Ве­ро­ят­ность по­пасть в ми­шень при одном вы­стре­ле равна 0,7. Най­ди­те ве­ро­ят­ность того, что ми­шень будет по­ра­же­на (либо пер­вым, либо вто­рым вы­стре­лом).


B 7. Най­ди­те ко­рень урав­не­ния [pic] .

 

B 8. Ч [pic] ерез концы [pic] , [pic] дуги окруж­но­сти в [pic] про­ве­де­ны ка­са­тель­ные [pic] и [pic] . Най­ди­те угол [pic] . Ответ дайте в гра­ду­сах.


B 9. На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции [pic] . Най­ди­те абс­цис­су точки, в ко­то­рой ка­са­тель­ная к гра­фи­ку [pic] па­рал­лель­на пря­мой [pic] или сов­па­да­ет с ней.






[pic]














Часть 2



B 12. Для под­дер­жа­ния на­ве­са пла­ни­ру­ет­ся ис­поль­зо­вать ци­лин­дри­че­скую ко­лон­ну. Дав­ле­ние [pic] (в пас­ка­лях), ока­зы­ва­е­мое на­ве­сом и ко­лон­ной на опору, опре­де­ля­ет­ся по фор­му­ле [pic] , где [pic] кг – общая масса на­ве­са и ко­лон­ны, [pic] – диа­метр ко­лон­ны (в мет­рах). Счи­тая уско­ре­ние сво­бод­но­го па­де­ния [pic]  м/с [pic] , а [pic] , опре­де­ли­те наи­мень­ший воз­мож­ный диа­метр ко­лон­ны, если дав­ле­ние, ока­зы­ва­е­мое на опору, не долж­но быть боль­ше 400 000 Па. Ответ вы­ра­зи­те в мет­рах.


B 14. От при­ста­ни A к при­ста­ни B от­пра­вил­ся с по­сто­ян­ной ско­ро­стью пер­вый теп­ло­ход, а через 1 час после этого сле­дом за ним со ско­ро­стью на 1 км/ч боль­шей от­пра­вил­ся вто­рой. Рас­сто­я­ние между при­ста­ня­ми равно 110 км. Най­ди­те ско­рость вто­ро­го теп­ло­хо­да, если в пункт B он при­был од­но­вре­мен­но с пер­вым. Ответ дайте в км/ч.


B 15. Най­ди­те точку мак­си­му­ма функ­ции [pic] .



C 1. а) Ре­ши­те урав­не­ние [pic]

б) Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку [pic]



















Вариант № 3308623

Часть 1

B 1. В школе есть трех­мест­ные ту­ри­сти­че­ские па­лат­ки. Какое наи­мень­шее число па­ла­ток нужно взять в поход, в ко­то­ром участ­ву­ет 20 че­ло­век?


B 2. В квар­ти­ре, где про­жи­ва­ет Алек­сей, уста­нов­лен при­бор учёта рас­хо­да хо­лод­ной воды (счётчик). 1 сен­тяб­ря счётчик по­ка­зы­вал рас­ход 103 куб. м воды, а 1 ок­тяб­ря — 114 куб. м. Какую сумму дол­жен за­пла­тить Алек­сей за хо­лод­ную воду за сен­тябрь, если цена 1 куб. м хо­лод­ной воды со­став­ля­ет 19 руб. 20 коп.? Ответ дайте в руб­лях.


B 3. На ри­сун­ке по­ка­за­но из­ме­не­ние тем­пе­ра­ту­ры воз­ду­ха на про­тя­же­нии трех суток. По го­ри­зон­та­ли ука­зы­ва­ет­ся дата и время суток, по вер­ти­ка­ли — зна­че­ние тем­пе­ра­ту­ры в гра­ду­сах Цель­сия. Опре­де­ли­те по ри­сун­ку раз­ность между наи­боль­шей и наи­мень­шей тем­пе­ра­ту­ра­ми воз­ду­ха 16 ок­тяб­ря. Ответ дайте в гра­ду­сах Цель­сия.

[pic]

B 4. Ме­бель­ный салон за­клю­ча­ет до­го­во­ры с про­из­во­ди­те­ля­ми ме­бе­ли. В до­го­во­рах ука­зы­ва­ет­ся, какой про­цент от суммы, вы­ру­чен­ной за про­да­жу ме­бе­ли, по­сту­па­ет в доход ме­бель­но­го са­ло­на.

В [pic] прейс­ку­ран­те при­ве­де­ны цены на че­ты­ре ди­ва­на. Опре­де­ли­те, про­да­жа ка­ко­го ди­ва­на наи­бо­лее вы­год­на для са­ло­на. В ответ за­пи­ши­те, сколь­ко руб­лей по­сту­пит в доход са­ло­на от про­да­жи этого ди­ва­на. B 5. Най­ди­те угол между век­то­ра­ми [pic]  и [pic] . Ответ дайте в гра­ду­сах.


B 6. Ков­бой Джон по­па­да­ет в муху на стене с ве­ро­ят­но­стью 0,9, если стре­ля­ет из при­стре­лян­но­го ре­воль­ве­ра. Если Джон стре­ля­ет из не­при­стре­лян­но­го ре­воль­ве­ра, то он по­па­да­ет в муху с ве­ро­ят­но­стью 0,2. На столе лежит 10 ре­воль­ве­ров, из них толь­ко 4 при­стре­лян­ные. Ков­бой Джон видит на стене муху, на­уда­чу хва­та­ет пер­вый по­пав­ший­ся ре­воль­вер и стре­ля­ет в муху. Най­ди­те ве­ро­ят­ность того, что Джон про­махнётся.

B [pic]  7. Най­ди­те ко­рень урав­не­ния [pic] .


B 8. Диа­го­наль па­рал­ле­ло­грам­ма об­ра­зу­ет с двумя его сто­ро­на­ми углы [pic] и [pic] . Най­ди­те боль­ший угол па­рал­ле­ло­грам­ма. Ответ дайте в гра­ду­сах.


B 9. На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (−7; 14). Най­ди­те ко­ли­че­ство точек мак­си­му­ма функ­ции f(x) на от­рез­ке [−6; 9].

 

[pic]











Часть 2


B 12. Во­до­лаз­ный ко­ло­кол, со­дер­жа­щий в на­чаль­ный мо­мент вре­ме­ни [pic] моля воз­ду­ха объeмом [pic] л, мед­лен­но опус­ка­ют на дно водоeма. При этом про­ис­хо­дит изо­тер­ми­че­ское сжа­тие воз­ду­ха до ко­неч­но­го объeма [pic] . Ра­бо­та, со­вер­ша­е­мая водой при сжа­тии воз­ду­ха, опре­де­ля­ет­ся вы­ра­же­ни­ем [pic] (Дж), где [pic] – по­сто­ян­ная, а [pic] – тем­пе­ра­ту­ра воз­ду­ха. Какой объeм [pic] (в лит­рах) ста­нет за­ни­мать воз­дух, если при сжа­тии газа была со­вер­ше­на ра­бо­та в 10350 Дж?


B 14. Че­ты­ре ру­баш­ки де­шев­ле курт­ки на 8%. На сколь­ко про­цен­тов пять ру­ба­шек до­ро­же курт­ки?


B 15. Най­ди­те точку мак­си­му­ма функ­ции [pic] .


C 1. а) Ре­ши­те урав­не­ние [pic]

б) Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие про­ме­жут­ку [pic]