Рабочая программа по алгебре 7 класс Мордкович по фгос

Автор публикации:

Дата публикации:

Краткое описание: ...


Муниципальное казенное общеобразовательное учреждение

«Рябинковская основная школа»

на заседании педагогического совета

протокол №______

от «___»__________20___г.

«Согласовано»

Заместитель директора

________Е.А. Ермакова

«_____»_________20___г.

«Утверждаю»

Директор

МКОУ «Рябинковская ОШ»

_______Е.О. Станулевич

«_____»__________20___г.























Рабочая программа

по предмету «алгебра»

класс 7







Составитель: Кошмелюк Е.Е

учитель математики











2015 г.

2.Пояснительная записка.


Рабочая программа основного общего образования составлена на основе Фундаментального ядра содержания общего образования и Требований к результатам освоения основной общеобразовательной программы основного общего образования, представленных в Федеральном государственном образовательном стандарте основного общего образования. В ней также учитываются основные идеи и положения Программы развития и формирования универсальных учебных действий для основного общего образования.

Основными целями курса алгебры для 7 классов, в соответствии с требованиями ФГОС ООО, являются:

  • формирование у учащихся основ умения учиться;

  • развитие их мышления, качеств личности, интереса к математике;

  • создание для каждого ребёнка возможности высокого уровня математической подготовки;

  • ознакомление с тремя этапами математического моделирования при описании реальной ситуации на математическом языке;

  • развитие вычислительной культуры школьников, обучение различным приемам выполнения действий с дробями, вычислениям с процентами;

  • систематическое изучение буквенного исчисления, что мотивировано опытом работы с числами, осознанием и обобщением приемов вычислений;

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.


Соответственно, задачами данного курса являются:

  1. формирование у учащихся способностей к организации своей учебной деятельности посредством освоения личностных, познавательных, регулятивных и коммуникативных универсальных учебных действий;

  2. приобретение опыта самостоятельной математической деятельности по получению нового знания, его преобразованию и применению;

  3. формирование специфических для математики качеств мышления, необходимых человеку для полноценного функционирования в современном обществе, и, в частности, логического, алгебраического и эвристического мышления;

  4. духовно-нравственное развитие личности, предусматривающее, с учётом специфики начального этапа обучения математике, принятие нравственных установок созидания, справедливости, добра, становление основ гражданской российской идентичности, любви и уважения к своему Отечеству;

  5. формирование математического языка и математического аппарата как средства описания и исследования окружающего мира и как основы компьютерной грамотности;

  6. реализация возможностей математики в формировании научного мировоззрения учащихся, в освоении ими научной картины мира с учётом возрастных особенностей учащихся;

  7. овладение системой математических знаний, умений и навыков, необходимых для повседневной жизни и для продолжения образования в средней школе;

  8. создание здоровьесберегающей информационно-образовательной среды;

  9. формирование понятий: отношение, пропорция, прямая и обратная пропорциональность;

  10. формирование умения выполнять действия с многочленами, раскладывать многочлены на множители;

  11. формирование умения решения линейных уравнений;

  12. введение понятия степени с целым неотрицательным показателем; ознакомление учащихся со свойствами степеней;

  13. введение понятие одночлена, стандартного вида одночлена, подобных одночленов;

  14. выполнение арифметических операций над одночленами;

  15. введение понятия многочлена и его стандартного вида;

  16. выполнение арифметических операций над многочленами и пользование формулами сокращенного умножения;

  17. дать первые представления об алгебраических дробях;

  18. ознакомление учащихся с основными приемами разложения многочлена на множители;

  19. введение понятия линейного уравнения с двумя переменными и его графика, линейной функции и прямой пропорциональности;

  20. представление о системе двух линейных уравнений с двумя переменными, научить использовать для решения систем методы подстановки и алгебраического сложения, графический метод;

  21. умение решать текстовые задачи, математическое моделирование которых приводит к системе двух линейных уравнений;

  22. вычисление статистических характеристик: среднее арифметическое, размах, мода и медиана.

  23. отработка навыка работы на координатной плоскости;

  24. формирование первичных представлений о графиках;

  25. введение понятий статистических данных, вычисление статистических характеристик: среднее арифметическое, размах, мода и медиана.

3.Общая характеристика учебного предмета

Алгебра нацелена на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира. Одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у учащихся представлений о роли математики в развитии цивилизации и культуры.

Виды и формы проверки качества знаний предмета.

Контрольная работа проводится в конце каждой темы с целью определения
конечного
результата в обучении, умения применять знания для решения задач определенного типа, изучаемых в данной теме.

Проводятся следующие виды проверки знаний учащихся: стартовая, промежуточная, итоговая. Формы контроля: выполнение тестовых заданий в форме контрольных работ.


4.Описание места учебного предмета, курса в учебном плане


На изучение алгебры в школе отводит 3 учебных часа в неделю, 102 учебных часа в год/ 3 часа в неделю. Контрольных работ – 11, из них стартовая, промежуточная и итоговая.

Уровень программы: базовый.


5.Личностные, метапредметные и предметные результаты освоения учебного предмета, курса


Программа обеспечивает достижение следующих результатов:

личностные:

  1. формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учетом устойчивых познавательных интересов;

  2. формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;

  3. формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;

  4. умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

  5. критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

  6. креативность мышления, инициатива, находчивость, активность при решении геометрических задач;

  7. умение контролировать процесс и результат учебной математической деятельности;

  8. способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;


метапредметные:

  1. умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;

  2. умение осуществлять контроль по результату и по способу действия на уровне произвольного внимания и вносить необходимые коррективы;

  3. умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;

  4. осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовых связей;

  5. умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;

  6. умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;

  7. умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, общие способу работы; умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; слушать партнера; формулировать, аргументировать и отстаивать свое мнение;

  8. формирование и развитие учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);

  9. первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, о средстве моделирования явлений и процессов;

  10. умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

  11. умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

  12. умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;

  13. умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

  14. умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

  15. понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

  16. умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

  17. умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;


предметные:

  1. сформировать практические навыки выполнения уст­ных, письменных, инструментальных вычислений, развить вычис­лительную культуру;

  2. овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;

  3. изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;

  4. развить логическое мышление и речь — умения логически обосно­вывать суждения, проводить несложные систематизации, приво­дить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллю­страции, интерпретации, аргументации и доказательства;

  5. сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реаль­ных процессов и явлений;

  6. умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использование при необходимости справочных материалов, калькулятора, компьютера.


6.Содержание учебного предмета, курса


Математический язык. Математическая модель. (12 часов)

Числовые и алгебраические выражения. Переменная. Допустимое значение переменной. Недопустимое значение переменной. Первые представления о математическом языке и о математической модели. Линейные уравнения с одной переменной. Линейные уравнения как математические модели реальных ситуаций. Координатная прямая, виды промежутков на ней.

Линейная функция. (11 часов)

Координатная плоскость. Алгоритм отыскания координат точки. Алгоритм построения точки M(a;b) в прямоугольной системе координат.

Линейное уравнение с двумя переменными. Решение уравнения ax + by + c = 0. График уравнения. Алгоритм построения графика уравнения ax + by + c = 0.

Линейная функция. Независимая переменная (аргумент). Зависимая переменная. График линейной функции. Наибольшее и наименьшее значения линейной функции на заданном промежутке. Возрастание и убывание линейной функции.

Линейная функция y = kx и ее график.

Взаимное расположение графиков линейных функций.

Системы двух линейных уравнений с двумя переменными. (12 часов)

Система уравнений. Решение системы уравнений. Графический метод решения системы уравнений. Метод подстановки. Метод алгебраического сложения.

Системы двух линейных уравнений с двумя переменными как математические модели реальных ситуаций (текстовые задачи).

Степень с натуральным показателем. (6 часов)

Степень. Основание степени. Показатель степени. Свойства степени с натуральным показателем. Умножение и деление степеней с одинаковыми показателями. Степень с нулевым показателем.

Одночлены. Операции над одночленами. (8 часов)

Одночлен. Коэффициент одночлена. Стандартный вид одночлена. Подобные одночлены.

Сложение одночленов. Умножение одночленов. Возведение одночлена в натуральную степень. Деление одночлена на одночлен.

Многочлены. Арифметические операции над многочленами. (14 часов)

Многочлен. Члены многочлена. Двучлен. Трехчлен. Приведение подобных членов многочлена. Стандартный вид многочлена.

Сложение и вычитание многочленов. Умножение многочлена на одночлен. Умножение многочлена на многочлен.

Квадрат суммы и квадрат разности. Разность квадратов. Разность кубов и сумма кубов.

Деление многочлена на одночлен.

Разложение многочленов на множители. (18 часов)

Вынесение общего множителя за скобки. Способ группировки. Разложение многочлена на множители с помощью формул сокращенного умножения, комбинации различных приемов. Метод выделения полного квадрата.

Понятие алгебраической дроби. Сокращение алгебраической дроби.

Тождество. Тождественно равные выражения. Тождественные преобразования.

Функция y = x2. (9 часов)

Функция y = x2, ее свойства и график. Функция y = -x2, ее свойства и график.

Графическое решение уравнений.

Кусочная функция. Чтение графика функции. Область определения функции. Первое представление о непрерывных функциях. Точка разрыва. Разъяснение смысла записи y = f(x). Функциональная символика.

Элементы статистики и теории вероятности. (3 часа)


7.Тематическое планирование с определением основных видов учебной деятельности


п/п

Тема

Всего часов

Контрольные работы

Характеристика видов деятельности

1.

Повторение изученного в 5-6 классах.

2

Стартовая


2.

Математический язык. Математическая модель

12

1

Вычисление значений числовых выражений, применение свойств и правил арифметических действий, выбор рациональных способов вычислений.

Чтение выражений, формул, правил, записанных на математическом языке, перевод словесных формулировок на математический язык. Использование символики для записи математических утверждений.

Описание реальных ситуаций с помощью математических моделей. Планирование хода решения задач с использованием трех этапов математического моделирования. Прогнозирование результата решения, оценка реальности полученного ответа.

Применение алгоритма при решении линейного уравнения.

Изображение чисел и числовых промежутков на числовой прямой.

Чтение учебника, извлечение информации в соответствии с темой урока и заданием учителя. Выполнение упражнений по правилу, образцу и алгоритму.


3.

Линейная функция

11

1

Построение точек и геометрических фигур в координатной плоскости.

Построение прямой, заданной линейным уравнением с двумя переменными.

Моделирование реальной ситуации с помощью линейного уравнения с двумя переменными. Исследование графической модели с точки зрения реальности результата.

Проведение аналогии между линейным уравнением с двумя переменными и линейной функцией.

Построение графика линейной функции, в том числе на заданном промежутке. Чтение графика, нахождение наибольшего и наименьшего значений функции.

Анализ поведения графика линейной функции в зависимости от значений коэффициентов k и m на основе наблюдения и сравнения.

Исследование взаимного расположения графиков линейных функций. Самостоятельное изучение материала учебника, извлечение учебной информации, осмысление ее и применение в учебной деятельности. Выполнение упражнений по аналогии, алгоритму, образцу

Поиск, обнаружение и устранение ошибок при построении графиков линейного уравнения с двумя переменными и линейной функции.


4.

Системы двух линейных уравнений с двумя переменными

12

1

Изучение новой математической модели – системы двух линейных уравнений с двумя переменными. Проведение аналогии между взаимным расположением двух прямых на координатной плоскости и графическим методом решения систем двух линейных уравнений с двумя переменными. Составление алгоритма решения систем графическим методом.

Исследование систем уравнений на предмет числа решений с помощью функционально-графических представлений.

Поиск решения в проблемной ситуации в случаях неточности и недостаточности применения графического метода решения систем (точка пересечения неточна или слишком удалена). Работа в группе.

Составление алгоритма решения систем методом постановки и алгебраического сложения. Работа в паре.

Выполнение самоконтроля при решении систем. Поиск, обнаружение и устранение ошибок при решении систем.

Описание реальных ситуаций с помощью систем двух линейных уравнений с двумя переменными. Решение задач в три этапа математического моделирования.


5.

Степень с натуральным показателем и её свойства

6

1

Чтение и запись степени выражения, свойств степени на математическом языке.

Составление таблицы степеней.

Изучение по учебнику этапов теоретического исследования. Самостоятельное проведение исследования.

Доказательство свойств степени.

Конструирование предложений с помощью связок «если…, то…». Работа в паре.

Применение определения и свойств степени при решении простейших уравнений, моделирование реальных ситуаций, приводящих к простейшему степенному уравнению.

6.

Одночлены. Арифметические операции над одночленами

8

1

Самостоятельное чтение учебника с целью поиска информации на заданную тему.

Выполнение алгебраических преобразований с одночленами, пошаговый контроль правильности выполнения алгоритма преобразования. Работа в паре.

Сравнение двух дробей по виду и выявление, которая из них является одночленом, а которая нет, обоснование вывода.

Составление алгоритма приведения одночлена к стандартному виду, сложения одночленов. Работа в паре.

Выполнение действий с одночленами.

Описание реальных ситуаций с помощью модели (уравнения) с подобными одночленами. Решение задач в три этапа математического моделирования.

7.

Многочлены. Арифметические операции над многочленами


14

1

Промежуточная

Выполнение действий с многочленами по правилам.

Описание реальных ситуаций с помощью математической модели, представляющей собой многочлены. Решение задач в три этапа математического моделирования.

Вывод формул сокращенного умножения. Чтение их и запись на математическом языке. Применение геометрической модели, иллюстрирующей вывод формул разности квадратов и квадрата суммы и разности.

Выполнение преобразований многочленов, пошаговый контроль правильности и полноты выполнения алгоритма. Поиск, обнаружение и устранение арифметических и алгебраических ошибок

8.

Разложение многочленов на множители

18

1

Чтение и запись на математическом языке при выполнении разложения на множители.

Комментирование решений, разобранных в учебнике.

Выполнение преобразования в виде разложения многочлена на множители по алгоритму и образцу. Решение уравнений, построение графиков уравнений, выполнение арифметических действий, связанных с разложением на множители, сокращение дробей.

9.

Функция y = x2

9

1

Изучение новых функций [pic] , графических моделей этих функций, свойств.

Построение и чтение графиков, в том числе кусочных функций. Проведение простейших исследований.

Применение графических моделей для решения уравнений, неравенств, систем неравенств. Проверка найденных корней.

Исследование взаимного расположения графика кусочной функции и прямой y = a на предмет числа общих точек при различных значениях а.


10.

Элементы статистики и теории вероятности

3


Сбор, анализ, обобщение и представление статистической информации в виде таблиц и диаграмм.

11.

Обобщающее повторение. Итоговая к/р.

6

1

Постановка цели и задач на при повторении материала. Планирование учебной деятельности на уроке и дома. Подведение итога, коррекция знаний. Самоконтроль.


Итого:

102

11



Календарно – тематическое планирование. [link] См. локальный акт школы «Положение об оценивании знаний обучающихся»