Рабочая программа по математике 5 класс Виленкин 6 часов в неделю

Автор публикации:

Дата публикации:

Краткое описание: ...


I. Пояснительная записка

Рабочая программа по математике составлена на основе:

  1. Федерального государственного образовательного стандарта основного общего образования (приказ Министерства образования и науки Российской Федерации от 17 декабря 2010 г. № 1897);

  2. Федерального закона Российской Федерации от 29 декабря 2012 г. N 273-ФЗ "Об образовании в Российской Федерации";

3. Примерной программы (Математика. 5-9 классы: проект. – 3-е изд., перераб. – М.:
Просвещение, 2011. – 64с. – (Стандарты второго поколения);

  1. Авторской программы «Математика, 5» авт. Н.Я. Виленкина, В.И. Жохова, А.С.Чеснокова, С.И.Шварцбурд с включением тем «Описательная статистика. Вероятность. Комбинаторика» из раздела «Вероятность и статистика» и ориентирована на учебник «Математика. 5 класс: учеб. для общеобразоват. Учреждений / Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд. – 27 изд., стер. М. : Мнемозина, 2010. – 280с. : ил.» и учебник «Математика, 5» авт. Н.Я. Виленкина, В.И. Жохова, А.С.Чеснокова, С.И.Шварцбурд с включением тем «Описательная статистика. Вероятность. Комбинаторика» из раздела «Вероятность и статистика» и ориентирована на учебник «Математика. 5 класс: учеб. для общеобразоват. Учреждений / Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд. – 30 изд., перер. М. : Мнемозина, 2015. – 280с. : ил.»

  2. Основной образовательной программы основного общего образования образовательного учреждения;

6. Федерального перечня учебников, рекомендованных (допущенных) Министерством
образования и науки РФ к использованию в образовательном процессе в общеобразовательных
школах.

Математика является одним из основных, системообразующих предметов школьного образования. Такое место математики среди школьных предметов обусловливает и её особую роль с точки зрения всестороннего развития личности учащихся. При этом когнитивная составляющая данного курса позволяет обеспечить как требуемый государственным стандартом необходимый уровень математической подготовки, так и повышенный уровень, являющийся достаточным для углубленного изучения предмета.

Вместе с тем очевидно, что положение с обучением предмету «Математика» в основной школе требует к себе самого серьёзного внимания. Анализ состояния преподавания свидетельствует, что школа не полностью обеспечивает функциональную грамотность учащихся.

В основу настоящей программы положены педагогические и дидактические принципы вариативного развивающего образования, изложенные в концепции образовательной программы «Перспективная школа», и современные дидактико-психологические тенденции, связанные с вариативным развивающим образованием и требованиями ФГОС.

A. Личностно ориентированные принципы: принцип адаптивности; принцип развития;
принцип комфортности процесса обучения.

Б. Культурно ориентированные принципы: принцип целостной картины мира; принцип целостности содержания образования; принцип систематичности; принцип смыслового отношения к миру; принцип ориентировочной функции знаний; принцип опоры на культуру как мировоззрение и как культурный стереотип.

B. Деятельностно ориентированные принципы: принцип обучения деятельности;
принцип управляемого перехода от деятельности в учебной ситуации к деятельности в
жизненной ситуации; принцип перехода от совместной учебно-познавательной деятельности к
самостоятельной деятельности учащегося (зона ближайшего развития); принцип опоры на


процессы спонтанного развития; принцип формирования потребности в творчестве и умений творчества.

Математическое образование является обязательной и неотъемлемой частью общего образования на всех ступенях школы. Обучение математике в основной школе направлено на достижение следующих целей:

1) в направлении личностного развития:

· Формирование представлений о математике как части общечеловеческой
культуры, о значимости математики в развитии цивилизации и современного
общества;

· Развитие логического и критического мышления, культуры речи, способности к
умственному эксперименту;

· Формирование интеллектуальной честности и объективности, способности к
преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

· Воспитание качеств личности, обеспечивающих социальную мобильность,
способность принимать самостоятельные решения;

· Формирование качеств мышления, необходимых для адаптации в современном
информационном обществе;

· Развитие интереса к математическому творчеству и математических способностей;

2) в метапредметном направлении:

· Развитие представлений о математике как форме описания и методе познания
действительности, создание условий для приобретения первоначального опыта
математического моделирования;

· Формирование общих способов интеллектуальной деятельности, характерных для
математики и являющихся основой познавательной культуры, значимой для
различных сфер человеческой деятельности;

3) в предметном направлении:

· Овладение математическими знаниями и умениями, необходимыми для
продолжения образования, изучения смежных дисциплин, применения в
повседневной жизни;

· Создание фундамента для математического развития, формирования механизмов
мышления, характерных для математической деятельности.

В организации учебно – воспитательного процесса важную роль играют задачи. Они являются и целью, и средством обучения. Важным условием правильной организации этого процесса является выбор рациональной системы методов и приемов обучения, специфики решаемых образовательных и воспитательных задач.

Целью изучения курса математике в 5-6 классах является систематическое развитие понятия числа, выработка умений выполнять устно и письменно арифметические действия над числами, переводить практические задачи на язык математики, подготовка учащихся к изучению систематических курсов алгебры и геометрии. Курс строится на индуктивной основе с привлечением элементов дедуктивных рассуждений. В ходе изучения курса учащиеся развивают навыки вычислений с натуральными числами, овладевают навыками с обыкновенными и десятичными дробями, положительными и отрицательными числами, получают представление об использовании букв для записи выражений и свойств арифметических действий, составлении уравнений, продолжают знакомство с геометрическими понятиями, приобретают навыки построения геометрических фигур.

II. Общая характеристика учебного предмета «Математика»

Настоящая программа по математике для основной школы является логическим продолжением программы «Перспективная школа» для начальной школы и вместе с ней составляет описание непрерывного курса математики с 1-го по 9-й класс общеобразовательной школы.

В основе содержания обучения математике лежит овладение учащимися следующими видами компетенций: предметной, коммуникативной, организационной и общекультурной. В соответствии с этими видами компетенций выделены главные содержательно-целевые направления развития учащихся средствами предмета «Математика».

Предметная компетенция. Под предметной компетенцией понимается осведомлённость школьников о системе основных математических представлений и овладение ими необходимыми предметными умениями. Формируются следующие образующие эту компетенцию представления: о математическом языке как средстве выражения математических законов, закономерностей и т.д.; о математическом моделировании как одном из важных методов познания мира. Формируются следующие образующие эту компетенцию умения: создавать простейшие математические модели, работать с ними и интерпретировать полученные результаты; приобретать и систематизировать знания о способах решения математических задач, а также применять эти знания и умения для решения многих жизненных задач.

Коммуникативная компетенция. Под коммуникативной компетенцией понимается сформированность умения ясно и чётко излагать свои мысли, строить аргументированные рассуждения, вести диалог, воспринимая точку зрения собеседника и в то же время подвергая её критическому анализу, отстаивать (при необходимости) свою точку зрения, выстраивая систему аргументации. Формируются образующие эту компетенцию умения, а также умения извлекать информацию из разного рода источников, преобразовывая её при необходимости в другие формы (тексты, таблицы, схемы и т.д.).

Организационная компетенция. Под организационной компетенцией понимается сформированность умения самостоятельно находить и присваивать необходимые учащимся новые знания. Формируются следующие образующие эту компетенцию умения: самостоятельно ставить учебную задачу (цель), разбивать её на составные части, на которых будет основываться процесс её решения, анализировать результат действия, выявлять допущенные ошибки и неточности, исправлять их и представлять полученный результат в форме, легко доступной для восприятия других людей.

Общекультурная компетенция. Под общекультурной компетенцией понимается осведомленность школьников о математике как элементе общечеловеческой культуры, её месте в системе других наук, а также её роли в развитии представлений человечества о целостной картине мира. Формируются следующие образующие эту компетенцию представления: об уровне развития математики на разных исторических этапах; о высокой практической значимости математики с точки зрения создания и развития материальной культуры человечества, а также о важной роли математики с точки зрения формировании таких важнейших черт личности, как независимость и критичность мышления, воля и настойчивость в достижении цели и др.

Содержание математического образования в основной школе формируется на основе фундаментального ядра школьного математического образования. В программе оно представлено в виде совокупности содержательных разделов, конкретизирующих соответствующие блоки фундаментального ядра применительно к основной школе. Программа регламентирует объем материала, обязательного для изучения в основной школе, а также дает его распределение между 5—6 и 7—9 классами.

Содержание математического образования в основной школе включает следующие разделы: арифметика, алгебра, функции, вероятность и статистика, геометрия. Наряду с этим в него включены два дополнительных раздела: логика и множества, математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и общекультурного развития учащихся. Содержание каждого из этих разделов разворачивается в содержательно-методическую линию, пронизывающую все основные разделы содержания математического образования на данной ступени обучения.

Содержание раздела «Арифметика» служит базой для дальнейшего изучения учащимися математики, способствует развитию их логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе в основной школе связано с рациональными и иррациональными числами, формированием первичных представлений о действительном числе. Завершение числовой линии (систематизация сведений о действительных числах, о комплексных числах), так же как и более сложные вопросы арифметики (алгоритм Евклида, основная теорема арифметики), отнесено к ступени общего среднего (полного) образования.

Содержание раздела «Алгебра» направлено на формирование у учащихся математического аппарата для решения задач из разных разделов математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей процессов и явлений реального мира. В задачи изучения алгебры входят также развитие алгоритмического мышления, необходимого, в частности, для усвоения курса информатики, овладения навыками дедуктивных рассуждений. Преобразование символьных форм вносит специфический вклад в развитие воображения учащихся, их способностей к математическому творчеству. В основной школе материал группируется вокруг рациональных выражений, а вопросы, связанные с иррациональными выражениями, с тригонометрическими функциями и преобразованиями, входят в содержание курса математики на старшей ступени обучения в школе.

Содержание раздела «Функции» нацелено на получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования разнообразных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графический), вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.

Раздел «Вероятность и статистика» — обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим прежде всего для формирования у учащихся функциональной грамотности — умений воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, проводить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащимся рассматривать случаи, осуществлять перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах.

При изучении статистики и вероятности расширяются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.

Цель содержания раздела «Геометрия» — развить у учащихся пространственное воображение и логическое мышление путем систематического изучения свойств геометрических фигур на плоскости и в пространстве и применения этих свойств при решении задач вычислительного и конструктивного характера. Существенная роль при этом отводится развитию геометрической интуиции. Сочетание наглядности со строгостью является неотъемлемой частью геометрических знаний. Материал, относящийся к блокам «Координаты» и «Векторы», в значительной степени несет в себе межпредметные знания, которые находят применение как в различных математических дисциплинах, так и в смежных предметах.

Особенностью раздела «Логика и множества» является то, что представленный в нем материал преимущественно изучается и используется распределенно — в ходе рассмотрения различных вопросов курса. Соответствующий материал нацелен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи.

Раздел «Математика в историческом развитии» предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения. На него не выделяется специальных уроков, усвоение его не контролируется, но содержание этого раздела органично присутствует в учебном процессе как своего рода гуманитарный фон при рассмотрении проблематики основного содержания математического образования.

Ценностные ориентиры содержания учебного предмета

Математическое образование играет важную роль как в практической, так и в духовной жизни общества. Практическая сторона математического образования связана с формированием способов деятельности, духовная — с интеллектуальным развитием человека, формированием характера и общей культуры.

Практическая полезность математики обусловлена тем, что ее предметом являются фундаментальные структуры реального мира: пространственные формы и количественные отношения — от простейших, усваиваемых в непосредственном опыте, до достаточно сложных, необходимых для развития научных и технологических идей. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять достаточно сложные расчеты, находить в справочниках нужные формулы и применять их, владеть практическими приемами геометрических измерений и построений, читать информацию, представленную в виду таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, составлять несложные алгоритмы и др.

Без базовой математической подготовки невозможно стать образованным современным человеком. В школе математика служит опорным предметом для изучения смежных дисциплин. В послешкольной жизни реальной необходимостью в наши дни является непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. И наконец, все больше специальностей, где необходим высокий уровень образования, связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, биология, психология и др.). Таким образом, расширяется круг школьников, для которых математика становится значимым предметом.

Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющегося в определенных умственных навыках. В процессе математической деятельности в арсенал приемов и методов человеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построений, вырабатывают При изучении статистики и вероятности расширяются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.

Цель содержания раздела «Геометрия» — развить у учащихся пространственное воображение и логическое мышление путем систематического изучения свойств геометрических фигур на плоскости и в пространстве и применения этих свойств при решении задач вычислительного и конструктивного характера. Существенная роль при этом отводится развитию геометрической интуиции. Сочетание наглядности со строгостью является неотъемлемой частью геометрических знаний. Материал, относящийся к блокам «Координаты» и «Векторы», в значительной степени несет в себе межпредметные знания, которые находят применение как в различных математических дисциплинах, так и в смежных предметах.

Особенностью раздела «Логика и множества» является то, что представленный в нем материал преимущественно изучается и используется распределенно — в ходе рассмотрения различных вопросов курса. Соответствующий материал нацелен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи.

Раздел «Математика в историческом развитии» предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения. На него не выделяется специальных уроков, усвоение его не контролируется, но содержание этого раздела органично присутствует в учебном процессе как своего рода гуманитарный фон при рассмотрении проблематики основного содержания математического образования.

Ценностные ориентиры содержания учебного предмета

Математическое образование играет важную роль как в практической, так и в духовной жизни общества. Практическая сторона математического образования связана с формированием способов деятельности, духовная — с интеллектуальным развитием человека, формированием характера и общей культуры.

Практическая полезность математики обусловлена тем, что ее предметом являются фундаментальные структуры реального мира: пространственные формы и количественные отношения — от простейших, усваиваемых в непосредственном опыте, до достаточно сложных, необходимых для развития научных и технологических идей. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять достаточно сложные расчеты, находить в справочниках нужные формулы и применять их, владеть практическими приемами геометрических измерений и построений, читать информацию, представленную в виду таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, составлять несложные алгоритмы и др.

Без базовой математической подготовки невозможно стать образованным современным человеком. В школе математика служит опорным предметом для изучения смежных дисциплин. В послешкольной жизни реальной необходимостью в наши дни является непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. И наконец, все больше специальностей, где необходим высокий уровень образования, связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, биология, психология и др.). Таким образом, расширяется круг школьников, для которых математика становится значимым предметом.

Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющегося в определенных умственных навыках. В процессе математической деятельности в арсенал приемов и методов человеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построений, вырабатывают умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление. Ведущая роль принадлежит математике в формировании алгоритмического мышления и воспитании умений действовать по заданному алгоритму и конструировать новые. В ходе решения задач — основной учебной деятельности на уроках математики — развиваются творческая и прикладная стороны мышления.

Обучение математике дает возможность развивать у учащихся точную, экономную и информативную речь, умение отбирать наиболее подходящие языковые (в частности, символические, графические) средства.

Математическое образование вносит свой вклад в формирование общей культуры человека. Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методе математики, его отличия от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач.

Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.

История развития математического знания дает возможность пополнить запас историко-научных знаний школьников, сформировать у них представления о математике как части общечеловеческой культуры. Знакомство с основными историческими вехами возникновения и развития математической науки, с историей великих открытий, именами людей, творивших науку, должно войти в интеллектуальный багаж каждого культурного человека.

III. Описание места учебного предмета «Математика» в учебном плане

На изучение математики в основной школе отводит 6 учебных часов в неделю в течение каждого года обучения, всего 408 уроков.

Распределение учебного времени между этими предметами представлено в таблице.



Классы

Предметы математического цикла

Количество часов на ступени основного образования

5-6

Математика

408

Предмет «Математика» в 5—6 классах включает арифметический материал, элементы алгебры и геометрии, а также элементы вероятностно-статистической линии.

IV. Личностные, метапредметные и предметные результаты освоения учебного предмета «Математика»

5–6 классы

Личностными результатами изучения предмета «Математика» (в виде следующих учебных курсов: 56 класс – «Математика», являются следующие качества:

независимость и критичность мышления;

воля и настойчивость в достижении цели.

Средством достижения этих результатов является:

система заданий учебников;

представленная в учебниках в явном виде организация материала по принципу минимакса;

использование совокупности технологий, ориентированных на развитие самостоятельности и критичности мышления: технология системно- деятельностного подхода в обучении, технология оценивания.

Метапредметными результатами изучения курса «Математика» является формирование универсальных учебных действий (УУД).

Регулятивные УУД:

56-й классы

самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебной деятельности, выбирать тему проекта;

выдвигать версии решения проблемы, осознавать (и интерпретировать в случае необходимости) конечный результат, выбирать средства достижения цели из предложенных, а также искать их самостоятельно;

составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);

работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно (в том числе и корректировать план);

в диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки.

Познавательные УУД:

56-й классы

анализировать, сравнивать, классифицировать и обобщать факты и явления;

осуществлять сравнение, сериацию и классификацию, самостоятельно выбирая основания и критерии для указанных логических операций; строить классификацию путём дихотомического деления (на основе отрицания);

строить логически обоснованное рассуждение, включающее установление причинно-следственных связей;

создавать математические модели;

составлять тезисы, различные виды планов (простых, сложных и т.п.). Преобразовывать информацию из одного вида в другой (таблицу в текст, диаграмму и пр.);

вычитывать все уровни текстовой информации.

уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность.

понимая позицию другого человека, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории. Для этого самостоятельно использовать различные виды чтения (изучающее, просмотровое, ознакомительное, поисковое), приёмы слушания.

самому создавать источники информации разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности;

уметь использовать компьютерные и коммуникационные технологии как инструмент для достижения своих целей. Уметь выбирать адекватные задаче инструментальные программно-аппаратные средства и сервисы.

Средством формирования познавательных УУД служат учебный материал и прежде всего продуктивные задания учебника.

Использование математических знаний для решения различных математических задач и оценки полученных результатов.

Совокупность умений по использованию доказательной математической речи.

Совокупность умений по работе с информацией, в том числе и с различными математическими текстами.

Умения использовать математические средства для изучения и описания реальных процессов и явлений.

Независимость и критичность мышления. Воля и настойчивость в достижении цели.

Коммуникативные УУД: 56-й классы

самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);

отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами; – в дискуссии уметь выдвинуть контраргументы;

учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;

понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;

уметь взглянуть на ситуацию с иной позиции и договариваться с людьми иных позиций.

Средством формирования коммуникативных УУД служат технология проблемного обучения, организация работы в малых группах, также использование на уроках технологии личностно- ориентированного и системно- деятельностного обучения.

Предметными результатами изучения предмета «Математика» являются следующие умения.

5-й класс

Использовать при решении математических задач, их обосновании и проверке найденного решения знание:

  • названий и последовательности чисел в натуральном ряду в пределах 1 000 000 (с какого числа начинается этот ряд, как образуется каждое следующее число в этом ряду);

  • как образуется каждая следующая счётная единица;

  • названия и последовательность разрядов в записи числа;

  • названия и последовательность первых трёх классов;

  • сколько разрядов содержится в каждом классе;

  • соотношение между разрядами;

  • сколько единиц каждого класса содержится в записи числа;

  • как устроена позиционная десятичная система счисления;

  • единицы измерения величин (длина, масса, время, площадь), соотношения между ними;

  • десятичных дробях и правилах действий с ними;

- сравнивать десятичные дроби;

  • выполнять операции над десятичными дробями;

  • преобразовывать десятичную дробь в обыкновенную и наоборот;

  • округлять целые числа и десятичные дроби;

  • находить приближённые значения величин с недостатком и избытком;

  • выполнять приближённые вычисления и оценку числового выражения;

  • функциональной связи между группами величин (цена, количество, стоимость; скорость, время, расстояние; производительность труда, время работы, работа).

Выполнять устные вычисления (в пределах 1 000 000) в случаях, сводимых к вычислениям в пределах 100, и письменные вычисления в остальных случаях; выполнять проверку правильности вычислений;

  • выполнять умножение и деление с 1000;

  • вычислять значения числовых выражений, содержащих 3–4 действия со скобками и без них;

  • решать простые и составные текстовые задачи;

  • выписывать множество всевозможных результатов (исходов) простейших случайных экспериментов;

  • находить вероятности простейших случайных событий;

  • решать удобным для себя способом (в том числе и с помощью таблиц и графов) комбинаторные задачи: на перестановку из трёх элементов, правило произведения, установление числа пар на множестве из 3–5 элементов;

  • решать удобным для себя способом (в том числе и с помощью таблиц и графов) логические задачи, содержащие не более трёх высказываний;

  • читать информацию, записанную с помощью линейных, столбчатых и круговых диаграмм;

  • строить простейшие линейные, столбчатые и круговые диаграммы;

V. Содержание учебного предмета «Математика»

6 часов в неделю, всего 204 часов. Содержание

1. Натуральные числа и шкалы. 18 часов

Обозначение и сравнение натуральных чисел. Отрезок. Длина отрезка. Треугольник. Плоскость. Прямая. Луч. Шкалы и координаты. Линейные диаграммы. Решение комбинаторных задач.

Основная цель. Систематизировать и обобщить сведения о натуральных числах, полученные в начальной школе; закрепить навыки построения и измерения отрезков. Ввести понятие координатного луча, единичного отрезка и координаты точки. Формировать умение строить координатный луч и отмечать на нем заданные числа, называть число, соответствующее данному делению на координатном луче. Научить использовать приобретенные знания и умения в практической деятельности и повседневной жизни. Контрольная работа № 1 по теме: «Натуральные числа и шкалы».

2. Сложение и вычитание натуральных чисел. 24 часов Сложение и вычитание натуральных чисел, их свойства. Числовые и буквенные выражения. Решение линейных уравнений. Решение комбинаторных задач.

Основная цель. Закрепить и развить навыки сложения и вычитания натуральных чисел. Начинать алгебраическую подготовку: составление буквенных выражений по условию задачи, решение уравнений на основе зависимости между компонентами действий. Научить использовать приобретенные знания и умения в практической деятельности и повседневной жизни. Контрольная работа № 2 по теме: «Сложение и вычитание натуральных чисел». Контрольная работа № 3 по теме: «Уравнение».

3. Умножение и деление натуральных чисел. 30 часа Умножение и деление натуральных чисел, свойства умножения. Упрощение выражений. Порядок выполнения действий. Квадрат и куб числа. Систематизация и подсчет имеющихся данных в виде частотных таблиц и диаграмм. Решение текстовых задач.

Основная цель. Закрепить и развить навыки арифметических действий с натуральными числами. Ввести понятия квадрата и куба числа. Совершенствовать навыки по решению уравнений на основе зависимости между компонентами действий. Развивать умение решать текстовые задачи. Познакомить с решением задач с помощью уравнений. Научить использовать приобретенные знания и умения в практической деятельности и повседневной жизни. Контрольная работа № 4 по теме: «Умножение и деление натуральных чисел». Контрольная работа №5 по теме «Упрощение выражений».

4. Площади и объёмы. 16 часов

Вычисления по формулам. Площадь. Площадь прямоугольника. Единицы измерения площадей. Столбчатые диаграммы. Прямоугольный параллелепипед. Объемы. Объем прямоугольного параллелепипеда.

Основная цель. Расширить представления учащихся об измерении геометрических величин на примере вычисления площадей и объёмов и систематизировать известные им сведения о единицах измерения. Отрабатывать навыки вычисления по формулам при решении геометрических задач. Формировать знания основных единиц измерения и умения перейти от

одних единиц к другим в соответствии с условием задачи. Научить использовать приобретенные знания и умения в практической деятельности и повседневной жизни. Контрольная работа №6 по теме «Площади и объемы».

5. Обыкновенные дроби. 29 часов

Окружность и круг. Обыкновенные дроби. Нахождение части от целого и целого по его части. Сравнение, сложение и вычитание обыкновенных дробей с одинаковыми знаменателями. Смешанные числа. Сложение и вычитание смешанных чисел. Практическая работа по сбору, организации и подсчету данных. Решение комбинаторных задач.

Основная цель. Познакомить учащихся с понятием дроби в объёме, достаточном для введения десятичных дробей. Формировать умения сравнивать дроби с одинаковыми знаменателями; выделять целую часть неправильной дроби; решать три основные задачи на дроби. Научить использовать приобретенные знания и умения в практической деятельности и повседневной жизни.

Контрольная работа № 7 по теме: «Обыкновенные дроби».

Контрольная работа №8 по теме: «Сложение и вычитание дробей с одинаковыми знаменателями».

6. Десятичные дроби. Сложение и вычитание десятичных дробей. 18 часов

Десятичная дробь. Сравнение, округление, сложение и вычитание десятичных дробей.

Решение комбинаторных задач. Решение текстовых задач.

Основная цель. Выработать умения читать, записывать, сравнивать, округлять десятичные

дроби, выполнять сложение и вычитание десятичных дробей. Вырабатывать умение решать

текстовые задачи. Ввести понятие приближенного значения числа. Научить использовать

приобретенные знания и умения в практической деятельности и повседневной жизни.

Контрольная работа № 9 по теме: «Десятичные дроби. Сложение и вычитание десятичных

дробей».

7. Умножение и деление десятичных дробей. 32 часа

Умножение и деление десятичных дробей. Среднее арифметическое нескольких чисел. Решение текстовых задач. Решение комбинаторных задач. Среднее значение и мода как характеристики совокупности числовых данных.

Основная цель. Выработать умения умножать и делить десятичные дроби, выполнять задания на все действия с натуральными числами и десятичными дробями. Научить использовать приобретенные знания и умения в практической деятельности и повседневной жизни.

Контрольная работа №10 по теме «Умножение и деление десятичных дробей на натуральные числа». Контрольная работа № 11 по теме: «Умножение и деление десятичных дробей».

8. Инструменты для вычислений и измерений. 20 часов

Начальные сведения о вычислениях на калькуляторе. Проценты. Нахождение процента от величины, величины по ее проценту. Угол. Треугольник. Величина угла. Единицы измерения углов. Измерение углов. Построение угла заданной величины. Круговые диаграммы. Решение комбинаторных задач.

Основная цель. Сформировать умения решать простейшие задачи на проценты, выполнять построение и измерение углов. Продолжать работу по распознаванию и изображению геометрических фигур. Познакомить с круговыми диаграммами. Научить использовать приобретенные знания и умения в практической деятельности и повседневной жизни. Контрольная работа № 12по теме: «Проценты». Контрольная работа № 13 по теме: «Инструменты для вычислений и измерений».

9. Итоговое повторение. 17 часов

Основная цель. Повторить, закрепить, обобщить основные ЗУН, полученные в 5 классе. Контрольная работа №14 ( Итоговая работа за курс 5 класса).

Представление данных в виде таблиц, диаграмм. Представление о выборочном исследовании.

Решение комбинаторных задач перебором вариантов. Перестановки и факториал.

Примеры решения комбинаторных задач: перебор вариантов, перестановки, факториал.

В ходе изучения темы обучающиеся должны

Знать:

- понятия вероятности, среднего арифметического, моды, факториала.
Уметь:

-извлекать информацию из таблиц и диаграмм, выполнять вычисления по табличным данным, сравнивать величины, находить наибольшее и наименьшее значения и др.

- выполнять сбор информации в несложных случаях, представлять информацию в виде таблиц и диаграмм, в том числе с помощью компьютерных программ

-выбирать комбинации, отвечающие заданным условиям,

- решать простейшие комбинаторные задачи




13