Рабочая программа по математике 10-11

Автор публикации:

Дата публикации:

Краткое описание: ...


Программа составлена на основе образовательной программы основного общего образования МБОУ «Лянторская СОШ №5», примерной программы для общеобразовательных учреждений по алгебре и началам математического анализа к УМК «Алгебра – 10-11 класс. Профильный уровень - автор А.Г.Мордкович» [Программы для общеобразовательных учреждений. Алгебра и начала математического анализа. 10-11 классы. Авторы-составители И.И.Зубарева, А.Г.Мордкович – М.: Мнемозина, 2007.];



1.Планируемые результаты освоения учебного предмета

В результате изучения математики на профильном уровне ученик должен:

Знать/понимать

  • значение математической науки для решения задач, возникающих в теории и практике; широту и ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

  • значение практики и вопросов, возникающих в самой математике, для формирования и развития математической науки;

  • идеи расширения числовых множеств как способа построения нового математического аппарата для решения практических задач и внутренних задач математики;

  • значение идей, методов и результатов алгебры и математического анализа для построения моделей реальных процессов и ситуаций;

  • возможности геометрии для описания свойств реальных предметов и их взаимного расположения;

  • универсальный характер законов логики математических рассуждений; их применимость в различных областях человеческой деятельности;

  • различие требований, предъявляемых к доказательствам в математике, естественных, социально-экономических и гуманитарных науках, на практике;

  • роль аксиоматики в математике; возможность построения математических теорий на аксиоматической основе; значение аксиоматики для других областей знания и для практики;

  • вероятностный характер различных процессов и закономерностей окружающего мира

Числовые и буквенные выражения

Уметь:

  • выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значение корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;

  • применять понятия, связанные с делимостью целых чисел, при решении математических задач;

  • находить корни многочленов с одной переменной, раскладывать многочлены на множители;

  • выполнять действия с комплексными числами, пользоваться геометрической интерпретацией комплексных чисел, находить комплексные корни уравнений с действительными коэффициентами;

  • проводить преобразования числовых и буквенных выражений, включающих степени, радикалы, тригонометрические функции, логарифмы.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства.

Функции и графики

У меть:

  • определять значение функции по значению аргумента при различных способах задания функции;

  • строить графики изученных функций, выполнять преобразования графиков;

  • описывать по графику и по формуле поведение и свойства функций;

  • решать уравнения, системы уравнений, неравенства, используя свойства функций и их графические представления;

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания и исследования с помощью функций реальных зависимостей, представления их графически.

Начала математического анализа

Уметь:

  • находить сумму бесконечно убывающей геометрической прогрессии;

  • вычислять производные и первообразные элементарных функций, применяя правила вычисления производных и первообразных;

  • исследовать функции и строить их графики с помощью производной;

  • решать задачи с применением уравнения касательной к графику функции;

  • решать задачи на нахождение наибольшего и наименьшего значения функции на отрезке;

  • вычислять площадь криволинейной трапеции.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • решения геометрических, физических, экономических и других прикладных задач, в том числе задач на наибольшие и наименьшие значения с применением аппарата математического анализа.

Уравнения и неравенства

Уметь:

  • решать рациональные, показательные, логарифмические уравнения и неравенства, иррациональные и тригонометрические уравнения, их системы;

  • доказывать несложные неравенства;

  • решать текстовые задачи с помощью составления уравнений и неравенств, учитывая ограничения в условии задачи;

  • изображать на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем; находить приближенные решения уравнений и их систем, используя графический метод;

  • решать уравнения, неравенства и системы с применением графических представлений, свойств функций, производной.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • построения и исследования простейших математических моделей.

Элементы комбинаторики, статистики и теории вероятностей

Уметь:

  • решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул, треугольника Паскаля; вычислять коэффициенты бинома Ньютона ;

  • вычислять вероятности событий на основе подсчета числа исходов (простейшие случаи).

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • анализа реальных числовых данных, представленных в виде диаграмм, графиков; для анализа информации статистического характера.

Содержание программы определено с учетом приоритета перехода на профильное обучение, подготовки к ЕГЭ для социально-экономического профиля, данный расширенный курс отвечает, как требованиям стандарта математического образования, так и требованиям КИМов ЕГЭ.






Основное содержание

  1. класс

  1. Повторение курса алгебры 7-9 классов

Дробно-рациональные выражения. Иррациональные выражения. Решение уравнений и неравенств. Входной контроль.

2.Действительные числа

Натуральные и целые числа. Делимость чисел. Основная теорема арифметики натуральных чисел. Рациональные, иррациональные, действительные числа, числовая прямая. Модуль действительного числа. Метод математической индукции.

3.Числовые функции

Определение числовой функции. Способы ее задания. Свойства функций. Периодические и обратные функции.

4.Тригонометрические функции

Числовая окружность на координатной плоскости. Определение синуса, косинуса, тангенса и котангенса. Тригонометрические функции числового и углового аргумента, их свойства. Основные тригонометрические формулы. Тригонометрические тождества. Графики тригонометрических функций. Сжатие и растяжение графиков тригонометрических функций. Обратные тригонометрические функции.

5.Тригонометрические уравнения

Простейшие тригонометрические уравнения и неравенства. Методы решения тригонометрических уравнений: метод замены переменной, метод разложения на множители, однородные тригонометрические уравнения.

6.Преобразование тригонометрических выражений

Формулы сложения, приведения, двойного угла, понижения степени. Преобразование суммы тригонометрических функций в произведение. Преобразование произведения тригонометрических функций в сумму. Методы решения тригонометрических уравнений (продолжение)

7.Комплексные числа

Комплексные числа и арифметические операции над ними. Комплексные числа и координатная плоскость. Тригонометрическая форма записи комплексного числа. Комплексные числа и квадратные уравнения. Возведение комплексного числа в степень. Извлечение квадратного и кубического корня из комплексного числа.

8.Производная

Числовые последовательности и их свойства. Предел последовательности. Сумма бесконечной геометрической прогрессии. Предел функции. Определение производной. Производная степенной функции. Производная суммы, произведения и частного двух функций. Производная сложной функции. Уравнение касательной к графику функции. Применение производной для исследования функций на монотонность и экстремумы, для отыскания наибольшего и наименьшего значений непрерывной функции на промежутке. Задачи на отыскание наибольших и наименьших значений величин.

9. Комбинаторика и вероятность

Правило умножения. Перестановки и факториалы. Выбор нескольких элементов. Сочетания и размещения. Бином Ньютона. Случайные события и их вероятности.

10.Повторение курса алгебры и начал математического анализа

Тригонометрические функции. Основные свойства функций. Основные тригонометрические формулы. Преобразование тригонометрических выражений. Решение тригонометрических уравнений. Простейшие тригонометрические неравенства. Понятие производной. Правила дифференцирования. Механический и геометрический смысл производной. Исследование функций, построение их графикой с помощью производной. Комбинаторика и вероятность.

  1. класс

1.Повторение курса алгебры и начал математического анализа 10 класса

Тригонометрические функции. Свойства синуса, косинуса, тангенса и котангенса. Основные тригонометрические формулы. Обратные тригонометрические функции. Решение уравнений cost=a, sint=a, tgt=a, ctgt=a. Тригонометрические уравнения.
Производные элементарных функций. Правила дифференцирования. Геометрический и физический смысл производной. Применение производной к исследованию функций. Входной контроль.

2.Степени и корни. Степенная функция

Понятие корня n-й степени из действительного числа. Функции , их свойства и графики. Свойства корня n-й степени. Преобразование выражений, содержащих радикалы. Обобщение понятия о показателе степени. Степенные функции, их свойства и графики. Дифференцирование степенной функции. Извлечение корней n-й степени из комплексных чисел

3.Показательная и логарифмическая функции

Показательная функция, ее свойства и график. Показательные уравнения и неравенства. Понятие логарифма. Функция , ее свойства и график. Свойства логарифмов. Логарифмические уравнения и неравенства. Дифференцирование показательной и логарифмической функций.

4.Первообразная и интеграл

Первообразная и неопределенный интеграл. Определенный интеграл, его вычисление и свойства. Вычисление площадей плоских фигур. Примеры применения интеграла в физике.

5.Элементы комбинаторики, статистики и теории вероятностей

Вероятность и геометрия. Независимые повторения испытаний с двумя исходами. Статистические методы обработки информации. Гауссова кривая. Закон больших чисел.

6.Многочлены

Многочлены от одной и нескольких переменных. Теорема Безу. Схема Горнера. Симметрические и однородные многочлены. Уравнения высших степеней.

7.Уравнения и неравенства. Системы уравнений и неравенств

Равносильность уравнений. Общие методы решения уравнений. Уравнения с модулями. Иррациональные уравнения. Доказательство неравенств. Решение рациональных неравенств с одной переменной. Неравенства с модулями. Иррациональные неравенства. Уравнения и неравенства с двумя переменными. Системы уравнений. Уравнения и неравенства с параметрами.

Повторение курса математики. Подготовка к ЕГЭ

Учебно-тематический план

10 класс

140

11 класс

140