Министерство образования, науки и молодежной политики
Краснодарского края
Государственное бюджетное образовательное учреждение
дополнительного профессионального образования
«Институт развития образования»
Краснодарского края
Авторская программа для общеобразовательных организаций Краснодарского края: Алгебра и начала математического анализа. 10 – 11 классы (автор-составитель Е.А. Семенко).
Краснодар
2016
Пояснительная записка
Цели обучения математике в общеобразовательной школе определяются её ролью в развитии общества в целом и формировании личности каждого отдельного человека. К ним относятся:
овладение конкретными математическими знаниями, необходимыми для применения в практической деятельности, для изучения смежных дисциплин, для продолжения образования;
интеллектуальное развитие учащихся, формирование качеств мышления, характерных для математической деятельности и необходимых для продуктивной жизни в обществе;
формирование представлений об идеях и методах математики, о математике как форме описания и методе познания действительности;
формирование представлений о математике как части общечеловеческой культуры, понимания значимости математики для общественного прогресса.
Образовательные и воспитательные задачи обучения математике должны решаться комплексно с учетом возрастных особенностей учащихся, специфики математики как науки и учебного предмета, определяющей ее роль и место в общей системе школьного обучения и воспитания.
Принципиальным положением организации школьного математического образования является уровневая дифференциация обучения. Осваивая общий курс математики, одни школьники в своих результатах ограничиваются уровнем обязательной подготовки, зафиксированной в стандарте образования, другие в соответствии со своими склонностями и способностями достигают более высоких рубежей. При этом достижение уровня обязательной подготовки становится непременной обязанностью ученика в его учебной работе. В то же время, каждый учащийся имеет право самостоятельно решить, ограничиться этим уровнем или же продвигаться дальше. Следует всемерно способствовать удовлетворению потребностей и запросов школьников, проявляющих интерес, склонности и способности к математике. Для таких школьников следует разрабатывать индивидуальные программы и задания, их необходимо привлекать к участию в математических кружках, олимпиадах, факультативных занятиях, рекомендовать дополнительную литературу. Развитие интереса к математике является важнейшей целью учителя.
Критерием успешной работы учителя служит качество математической подготовки школьников, выполнение поставленных образовательных и воспитательных задач, а не формальное использование какого-то метода, приема или средства обучения.
Настоящая программа разработана в соответствии с требованиями федерального компонента Государственного образовательного стандарта среднего (полного) общего образования по математике, на основе примерной программы среднего (полного) общего образования по математике.
Основное отличие предложенной программы от всех программ, представленных в сборниках, в последовательности изложения материала. Это связано с тем, что в результате эксперимента по введению единого государственного экзамена по математике в нашем крае выявлены недостатки в изучении тем «Логарифмическая функция», «Логарифмические уравнения», «Логарифмические неравенства». Отмечено, что учащиеся, изучавшие эти темы в 10 классе, на ЕГЭ справились с заданиями, проверяющими усвоение этих тем, лучше, нежели школьники, изучившие указанные темы лишь в 11 классе.
Для построения единого образовательного пространства и для управления качеством математического образования на Кубани необходима единая программа.
Программа предполагает подробное изучение тригонометрии в 10 классе, а также изучение степенной, показательной и логарифмической функций. При этом знакомство с решением показательных и логарифмических уравнений и неравенств в 10 классе происходит на базовом уровне (т.е. рассматриваются простейшие уравнения и неравенства).
В 11 классе программой предусматривается возврат к темам «Показательные и логарифмические уравнения и их системы», «Показательные и логарифмические неравенства и их системы». Это позволит учащимся, слабо усвоившим соответствующие темы в 10 классе, еще раз вернуться к ним, а учащимся, которые хорошо усвоили эти темы на базовом уровне, можно предлагать задачи повышенного и высокого уровня сложности. В 11 класс перенесены все элементы математического анализа. Предполагается, что на протяжении 10 класса, параллельно с изучением новых тем, будет проводиться повторение курса алгебры основной школы, а в 11 классе в повторение будут включаться разделы, изученные в 10 классе. Таким образом, наиболее сложные для усвоения темы будут рассмотрены с учащимися дважды, что позволит им лучше подготовиться к итоговой аттестации.
Календарно-тематическое планирование по данной программе разработано на 34 учебных недели в трех вариантах: I вариант, для профильных классов гуманитарного направления, в которых преподавание алгебры и начал анализа ведется в объеме 2,5 часа в неделю (если учебным планом в профильном классе предусмотрено 35 учебных недель, то 2,5 часа необходимо добавить к блоку итогового повторения), II вариант для общеобразовательных классов – 3 часа в неделю, III вариант для профильных классов – 4 часа в неделю.
АЛГЕБРА И НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА
Базовый уровень
Требования к уровню математической подготовки
выпускников 10 класса
В результате изучения курса алгебры и математического анализа в 10 – м классе учащиеся должны уметь:
находить значения корня натуральной степени, степени с рациональным показателем, логарифма, значения тригонометрических выражений на основе определений и основных свойств, пользоваться оценкой и прикидкой при практических расчетах;
выполнять тождественные преобразования тригонометрических, иррациональных, степенных, показательных и логарифмических выражений;
вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;
определять значения функции по значению аргумента при различных способах задания функции;
описывать по графику и в простейших случаях по формуле поведение и свойства функций;
строить графики линейной, квадратичной, тригонометрических, степенной, показательной и логарифмической функций;
решать уравнения и неравенства, используя свойства функций и их графики;
решать рациональные, тригонометрические, иррациональные, показательные (простейшие) и логарифмические (простейшие) уравнения;
решать рациональные, показательные (простейшие) и логарифмические (простейшие) неравенства;
составлять уравнения и неравенства по условию задачи;
использовать графический метод для приближенного решения уравнений и неравенств.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
Содержание курса в 10 классе
Повторение.
Решение рациональных уравнений (линейных, дробно – линейных и квадратных).
Решение рациональных неравенств (линейных, дробно – линейных и квадратных) методом интервалов.
Действительные числа.
Натуральные и целые числа. Признаки делимости. Рациональные, иррациональные и действительные числа. Свойства арифметических операций над действительными числами. Числовая (действительная) прямая. Модуль действительного числа.
Тригонометрические выражения.
Понятие числовой окружности. Радианное измерение углов.
Определение синуса, косинуса, тангенса, котангенса любого действительного числа, связь этих определений с определениями тригонометрических функций, введенных в курсе планиметрии.
Соотношения между тригонометрическими функциями одного и того же аргумента (угла, числа). Знаки тригонометрических функций в зависимости от расположения точки, изображающей число на числовой окружности.
Формулы приведения, вывод, их применение.
Формулы сложения (косинус и синус суммы и разности двух углов), их применение.
Формулы двойных и половинных [link] Пункты, выделенные курсивом, не применяются при контроле уровня подготовки выпускников профильных классов гуманитарного направления.