Рабочая программа по математике 7-9 классы

Автор публикации:

Дата публикации:

Краткое описание: ...



Рабочая программа основного общего образования по математике для 7-9 классов

Пояснительная записка

Рабочая программа по математике для 7-9 классов составлена на основе федерального компонента государственного стандарта основного общего образования (приказ МОиН РФ от 05.03.2004г. № 1089), примерных программ по алгебре и геометрии (письмо Департамента государственной политики в образовании Минобрнауки России от 07.07.2005г. № 03-1263), «Временных требований к минимуму содержания основного общего образования» (приказ МО РФ от 19.05.98. № 1236), сборник “Программы. Математика. 5-6 классы. Алгебра 7-9 классы. Алгебра и начала математического анализа. 10-11 классы / авт.-сост. И. И. Зубарева, А. Г. Мордкович. – 3-е изд., стер. – М.: Мнемозина, 2011, Программа по геометрии 7-9 кл./сост. Атанасян, 2008 г.

Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса.

Цели изучения предмета

Изучение математики на ступени основного общего образования направлено на достижение следующих целей:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.

  • систематическое развитие понятия числа;

  • выработка умений выполнять устно и письменно арифметические действия над числами, переводить практические задачи на язык математики.


Общая характеристика учебного предмета

Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.

Арифметика призвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами.

Алгебра Изучение алгебры нацелено на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира (одной из основных задач изучения алгебры является развитие алгоритмического мышле­ния, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у обучающихся представлений о роли математики в развитии цивилизации и культуры.

Геометрия — один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, фор­мирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математи­ческой культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах.

При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.

Таким образом, в ходе освоения содержания курса учащиеся получают возможность:

  • развить представление о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;

  • овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;

  • изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;

  • развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;

  • получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

  • развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

  • сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.

Место предмета в Учебном плане

Согласно Федеральному базисному учебному плану 2004 года для образовательных учреждений Российской Федерации для обязательного изучения математики на этапе основного общего образования отводится 170 часов в год из расчета 5 часов в неделю (3 часа алгебры и 2 часа геометрии).

Составленная программа рассчитана на обучение по учебнику Алгебра 8 А. Г. Мордковича и по учебнику Геометрия 7-9 Л. С. Атанасяна.

Требования к уровню подготовки обучающихся 7 класса

В результате изучения курса алгебры 7-го класса учащиеся должны уметь:

  • бегло и уверенно выполнять арифметические действия с рациональными числами; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления;

  • выполнять тождественные преобразования выражений: приведение подобных слагаемых, раскрытие скобок со знаком «плюс» или «минус» пред скобками;

  • решать уравнения с одним неизвестным и применять уравнения к решению текстовых задач; решать системы линейных уравнений;

  • строить графики функций [pic] , (b≠0), [pic] ; понимать как влияет знак коэффициента k на расположение в координатной плоскости графика функции [pic] , где k≠0, как зависит от значений k и b взаимное расположение графиков двух функций вида [pic] ; видеть эту зависимость.

  • выполнять основные действия со степенями с натуральным показателем, с многочленами; выполнять разложение многочленов на множители;

  • понимать графическую интерпретацию решения уравнений и систем уравнений;

  • понимать содержательный смысл важнейших свойств функции; по графику функции отвечать на вопросы, касающиеся её свойств; строить графики функций – линейной, квадратичной функции и функции [pic] ;

  • использовать приобретенные знания, умения, навыки в практической деятельности и повседневной жизни для:

    • решения несложных практических расчетных задач, в том числе с использованием при необходимости справочной литературы, калькулятора, компьютера;

    • устной прикидки, и оценки результата вычислений, проверки результата вычислений выполнением обратных действий;

    • моделирования практических ситуаций и исследовании построенных моделей с использованием аппарата алгебры;

    • интерпретации графиков реальных зависимостей между величинами.

В результате изучения курса геометрии 7-го класса учащиеся должны уметь:

  • пользоваться геометрическим языком для описания предметов окружающего мира;

  • распознавать на чертежах и моделях геометрические фигуры (отрезки, углы, треугольники и их частные виды), различать их взаимное расположение;

  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразование фигур;

  • вычислять значения геометрических величин (длин отрезков, градусную меру углов);

  • решать геометрические задания, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический аппарат;

  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

  • решать простейшие планиметрические задачи в пространстве.

  • использовать приобретенные знания, умения, навыки в практической деятельности и повседневной жизни для:

    • описания реальных ситуаций на языке геометрии;

    • решения практических задач;

    • построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).

Учебно-тематический план 7 класса

Алгебра

п/п

Название раздела

Количество часов

Теория

Контрольные работы

Всего

1

Повторение.

3

-

3

2

Математический язык. Математическая модель.

12

1

13

3

Линейная функция

11

1

12

4

Системы двух линейных уравнений с двумя переменными

11

1

12

5

Степень с натуральным показателем и ее свойства

7

1

8

6

Одночлены. Арифметические операции над одночленами

8

1

9

7

Многочлены. Арифметические операции над многочленами

16

1

17

8

Разложение многочленов на множители

19

1

20

9

Функция [pic] .

6

1

7

10

Итоговое повторение

1

-

1

Всего:

94

8

102


Геометрия

п/п

Название раздела

Количество часов

Теория

Контрольные работы

Всего

1

Начальные геометрические сведения

10

1

11

2

Треугольники

17

1

18

  1. 3

3

Параллельные прямые

11

1

12

4

Соотношение между сторонами и углами треугольника

17

2

19

  1. 55

Повторение по геометрии

6

-

6

  1. 66

Итоговая контрольная работа по геометрии

-

1

1

  1. 77

Итоговая контрольная работа по математике

-

1

1

Всего:

61

7

68

Требования к уровню подготовки обучающихся 8 класса

В результате изучения математики ученик должен

Алгебра

знать/понимать

  • существо понятия математического доказательства; примеры доказательств;

  • существо понятия алгоритма; примеры алгоритмов;

  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

  • вероятностный характер многих закономерностей и выводов;

  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

уметь

  • составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;

  • выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;

  • применять свойства квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;

  • решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, простейшие иррациональные уравнения, системы двух линейных уравнений;

  • решать линейные и квадратные неравенства с одной переменной;

  • решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;

  • изображать числа точками на координатной прямой;

  • определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;

  • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

  • определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

  • описывать свойства изученных функций, строить их графики;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;

  • моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;

  • описания зависимостей между физическими величинами, соответствующими формулами при исследовании несложных практических ситуаций;

  • интерпретации графиков реальных зависимостей между величинами;

Геометрия

уметь

  • пользоваться языком геометрии для описания предметов окружающего мира;

  • распознавать геометрические фигуры, различать их взаимное расположение;

  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;

  • вычислять значения геометрических величин (длин, углов, площадей), в том числе: для углов от 0˚ до 90˚ определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, площадей основных геометрических фигур и фигур, составленных из них;

  • решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;

  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания реальных ситуаций на языке геометрии;

  • расчетов, включающих простейшие тригонометрические формулы;

  • решения геометрических задач с использованием тригонометрии;

  • решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

  • построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).

Элементы комбинаторики, статистики и теории вероятностей

уметь

  • проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;

  • извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;

  • решать комбинаторные задачи путем систематического перебора возможных вариантов, а также с использованием правила умножения;

  • вычислять средние значения результатов измерений;

  • находить частоту события, используя собственные наблюдения и готовые статистические данные;

  • находить вероятности случайных событий в простейших случаях;

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выстраивания аргументации при доказательстве (в форме монолога и диалога);

  • распознавания логически некорректных рассуждений;

  • записи математических утверждений, доказательств;

  • анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;

  • решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;

  • решения учебных и практических задач, требующих систематического перебора вариантов;

  • сравнения шансов наступления случайных событий, оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;

  • понимания статистических утверждений;

приобретать опыт

  • самостоятельно работать с источниками информации, анализировать, обобщать и систематизировать полученную информацию, интегрировать ее в личный опыт.



Содержание обучения (8 класс)

Алгебра

  1. Повторение по алгебре (4 ч)

Основные понятия Линейные уравнения как математические модели реальных ситуаций. Свойства степеней с натуральным показателем. Степень с нулевым показателем Действия с многочленами. Формулы сокращенного умножения. Разложение многочлена на множители. Линейное уравнение с двумя переменными. Линейная функция, прямая пропорциональность, функция y=x2, их свойства и графики. Решение систем двух линейных уравнений с двумя переменными.

Основная цель- систематизация знаний обучающихся.

В результате изучения темы учащийся должен

знать/понимать

- графики и свойства функций;

- основные методы решений уравнений и систем;

- свойства степени с натуральным показателем;

- алгоритмы действия с одночленами и многочленами;

уметь

- решать линейные уравнения;

- выполнять операцию возведения в степень, применять свойства степеней при вычислении значений выражений;

- приводить одночлен к стандартному виду, выполнять действия с одночленами: сложение, вычитание, умножение, возведение в натуральную степень, деление;

- строить и читать график линейного уравнения с двумя переменными, линейной функции, прямой пропорциональности, у=х2;

- определять взаимное расположение графиков линейных функций;

- решать уравнения графически;

- составлять систему двух линейных уравнений с двумя переменными как математическую модель реальной ситуации;

-решать системы линейных уравнений графическим способом, методом подстановки, методом алгебраического сложения;

использовать в практической деятельности

- построение и исследование простейших математических моделей;

приобретать опыт

- планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов при изменении определенных условий

  1. Алгебраические дроби. (23 ч. в том числе 2 к.р.+1 входная к.р.)

Основные понятия:

Понятие алгебраической дроби, основное свойство алгебраической дроби. Сложение, вычитание, умножение и деление алгебраических дробей. Возведение алгебраической дроби в степень. Преобразование алгебраических выражений. Первые представления о решении рациональных уравнений.


Основная цель: выработать умение выполнять тождественные преобразования рациональных выражений.

В результате изучения темы учащийся должен

знать/понимать

- понятие алгебраической дроби, основное свойство алгебраической дроби;

- алгоритм сокращения дробей и приведения к общему знаменателю;

- правила сложения и вычитания алгебраических дробей с одинаковыми и разными знаменателями;

- правила умножения и деления алгебраических дробей;

- правило возведения алгебраической дроби в степень

- правило преобразования рациональных выражений;

- правило решения рациональных уравнений;

уметь

- находить значения алгебраических дробей, область допустимых значений для дробей;

- составлять математические модели для задач;

- сокращать дроби и приводить к одинаковому знаменателю;

- выполнять арифметические действия с алгебраическими дробями;

- возводить дробь в степень;

- упрощать выражения, доказывать тождества;

- решать рациональные уравнения;

использовать в практической деятельности

- умение строить простейшие математические модели;

приобретать опыт

- алгоритмической деятельности при составлении математической модели заданной ситуации.

3. Функция y=√x. Свойства квадратного корня (15 ч. в том числе 1 к.р.)

Основные понятия:

Понятие квадратного корня из неотрицательного числа. Нахождение приближенного значения корня с помощью калькулятора. Функция y=√x, ее свойства и график. Графическое решение уравнений вида √x.= f(x), где f(x) =kx+m, f(x)= k/x, f(x) =ax²+bx+c. Построение графика функции y=√x+t+m. Понятие о выпуклости функции. Свойства квадратных корней и их применение в вычислениях. Преобразований выражений, содержащих квадратные корни. Понятие кубического корня.


Основная цель: выработать умение выполнять несложные преобразования выражений, содержащих квадратный корень; изучить новую функцию y=√x.

В результате изучения темы учащийся должен

знать/понимать

- понятие квадратного корня;

- правила вычисления квадратного корня из неотрицательного числа;

- основные свойства и правила построения графика функции y=√x;

- правила построения графика при помощи параллельного переноса;

- свойства квадратного корня;

- правила вынесения/внесения множителя из-под/под корня, правила преобразования подобных членов;

- правило избавления от иррациональности в знаменателе;

- алгоритм упрощения сложных выражений;

- формулы сокращенного умножения: разность квадратов, квадрат суммы и разности, разность кубов, куб суммы и разности двух выражений;

уметь

- находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

- определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

- описывать свойства изученных функций, строить их графики;

- изображать числа точками на координатной прямой;

- определять координаты точки плоскости, строить точки с заданными координатами;

- строить графики известных функций;

- решать уравнения графически;

- строить графики функций с помощью параллельного переноса;

- вычислять квадратный корень из чисел и выражений, используя свойства;

- решать уравнения;

- выносить/вносить множитель из-под/под корня;

- пользоваться свойствами квадратных корней;

использовать в практической деятельности

- описания и исследования функций реальных зависимостей, представления их графически;

- интерпретация графиков реальных процессов;

- выполнения расчетов по формулам сокращенного умножения, при необходимости используя справочные материалы и простейшие вычислительные устройства;

приобретать опыт

- интерпретации реальных ситуаций через математическую модель такую как функция и отображения ее графически;

- осуществления алгоритмической деятельности и планирования ее рациональности.

4. Квадратичная функция. Функция y=k/x. (17 ч. в том числе 2 к.р.)

Основные понятия:

Возрастание и убывание функции. Чтение графиков функции. Квадратичная функция, ее график, парабола. Координаты вершины параболы, ось симметрии. Функция y=ax², ее свойства и график. Функция y=k/x, ее свойства и график. Построение графиков функций y=f(x+t)+m и у=-f(x) по известному графику функции y=f(x). График квадратичной функции y=ax²+bx+c (a≠0). Понятие ограниченности функции. Отыскание наибольшего и наименьшего значений квадратичной функции на заданном промежутке. Графическое решение квадратных уравнений. Построение и чтение графиков кусочных функций, составленных из функций y=C, y=kx, y=kx+m, y=k/x, y=ax²+bx+c. Параллельный перенос графиков вдоль осей координат и симметрия относительно осей.


Основная цель: расширить класс функций, свойства и графики которых известны учащимся; продолжить формирование представлений о таких фундаментальных понятиях математики, каким являются понятия функции, ее области определения, ограниченности, непрерывности, наибольшего и наименьшего значений на заданном промежутке.

В результате изучения темы учащийся должен

знать/понимать

- виды функций: линейная, квадратичная, прямая и обратная пропорциональности, кусочная;

- основные свойства функций;

- алгоритм построения графиков функций;

- алгоритм графического решения уравнений;

уметь

- находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

- определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

- описывать свойства изученных функций, строить их графики;

- изображать числа точками на координатной прямой;

- определять координаты точки плоскости, строить точки с заданными координатами;

- строить графики известных функций;

- решать уравнения графически;

- строить графики функций с помощью параллельного переноса;

использовать в практической деятельности

- описания и исследования функций реальных зависимостей, представления их графически;

- интерпретация графиков реальных процессов;

- выполнения расчетов по формулам сокращенного умножения, при необходимости используя справочные материалы и простейшие вычислительные устройства;

приобретать опыт

- интерпретации реальных ситуаций через математическую модель такую как функция и отображения ее графически;

- осуществления алгоритмической деятельности и планирования ее рациональности.

  1. Квадратные уравнения (19 ч. в том числе 2 к.р.)

Основные понятия:

Основные понятия, связанные с квадратными уравнениями. Обзор известных методов решения квадратных уравнений: метод разложения на множители, метод выделения полного квадрата, графические методы. Формулы корней квадратного уравнения. Теорема Виета. Квадратный трехчлен. Выделение полного квадрата в квадратном трехчлене. Корень многочлена. Разложение квадратного трехчлена на линейные множители. Рациональные уравнения. Решение текстовых задач алгебраическим способом. Иррациональные уравнения. Равносильность уравнений и равносильные преобразования уравнений (первые представления).


Основная цель: выработать умения решать квадратные уравнения и уравнения, сводящиеся к квадратным, и применять их при решении задач.

В результате изучения темы учащийся должен

знать/понимать

- понятия квадратного уравнения, корня квадратного уравнения, неполного квадратного уравнения;

- формулы корней квадратного уравнения;

- алгоритм решения полных и неполных квадратных уравнений;

- теорему Виета;

- алгоритм разложения квадратного трехчлена на множители;

- понятие рационального уравнения, биквадратные уравнения;

- понятие иррационального уравнения

уметь

- решать квадратные уравнения различными способами: метод разложения на множители, метод выделения полного квадрата, графические методы, с использованием формул корней квадратного уравнения (общая и с четным вторым коэффициентом), теоремы Виета;

- решать неполные квадратные уравнения;

- решать и оформлять задачи с помощью квадратных и рациональных уравнений;

- решать рациональные и биквадратные уравнения и уравнения, решаемые с помощью замены переменной;

- сокращать дроби;

- раскладывать квадратный трехчлен на множители;

- решать иррациональные уравнения;

использовать в практической деятельности

- умение строить простейшие математические модели;

приобретать опыт

- алгоритмической деятельности при составлении математической модели заданной ситуации.


  1. Неравенства (17 ч. в том числе 1 к.р.)

Основные понятия:

Числовые неравенства и их свойства. Неравенство с одной переменной. Решение неравенства. Линейные неравенства с одной переменной. Квадратные неравенства. Решение линейных и квадратных неравенств. Доказательство числовых и алгебраических неравенств. Равносильность неравенств (первые представления). Возрастающие и убывающие функции. Исследование функций на монотонность (с использованием свойств числовых неравенств).


Основная цель: выработать умения решать линейные и квадратные неравенства с одной переменной; познакомиться со свойством монотонности функции.

В результате изучения темы учащийся должен

знать/понимать

- понятие и свойства числовых неравенств;

- понятие и правила решения линейных неравенств;

- понятие и правила решения квадратного неравенства;

- понятие убывающей и возрастающей функций;

уметь

- сравнивать числа и выражения;

- пользоваться свойствами числовых неравенств;

- решать линейные неравенства и показывать решение на координатной прямой;

- решать задачи с помощью неравенств;

- решать квадратные неравенства с помощью параболы, методом интервалов;

- определять промежутки монотонности функции;

использовать в практической деятельности

- описания и исследования функций реальных зависимостей, представления их графически;

- интерпретация графиков реальных процессов;

- выполнения расчетов по формулам сокращенного умножения, при необходимости используя справочные материалы и простейшие вычислительные устройства;

- умения строить простейшие математические модели;

приобретать опыт

- интерпретации реальных ситуаций через математическую модель такую как числовые промежутки и отображения ее графически;

- осуществления алгоритмической деятельности и планирования ее рациональности

- алгоритмической деятельности при составлении математической модели заданной ситуации.


7. События. Вероятности (7 ч. в том числе 1 к.р.)

Основные понятия:

Примеры решения комбинаторных задач: перебор вариантов, правило умножения. Выбор двух, трех и более элементов. Числа Сⁿm . Понятие и примеры случайных событий. События достоверные, невозможные и случайные. Частота события, вероятность. Классическое определение вероятности. Вероятность противоположного события, вероятность суммы несовместных событий.


Основная цель: формировать способность представлять явления в разных комбинациях, основные комбинаторные и вероятностные представления об окружающем мире, развивать комбинаторное мышление.

В результате изучения темы учащийся должен

знать/понимать

- вероятностный характер многих закономерностей окружающего мира;

- понятие выбора двух, трех и более элементов;

- понятие события достоверного, невозможного и случайного;

- понятие классического определения вероятности;

уметь

- находить сочетания из m по n элементов;

- определять события достоверные, невозможные и случайные;

- вычислять вероятность события, вероятность противоположного события, вероятность суммы несовместных событий;

использовать в практической деятельности

- решение практических задач с использованием вероятности и сочетаний;

- сравнение шансов наступления случайных событий, оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;

приобретать опыт

- выстраивание аргументации при доказательстве (в форме монолога и диалога);

- распознавание логически некорректных рассуждений;


Геометрия

1.Четырехугольники (16 ч. в том числе 1 к.р.)

Основные понятия:

Понятия многоугольника, выпуклого многоугольника. Параллелограмм и его признаки и свойства. Трапеция. Прямоугольник, ромб, квадрат и их свойства. Осевая и центральная симметрии.

Основная цель: дать систематические сведения о четырехугольниках и их свойствах; сформировать представления о фигурах, симметричных, относительно точки или прямой.


В результате изучения темы учащийся должен

знать/понимать

- понятие многоугольника и выпуклого многоугольника, элементов многоугольника, внутренней и внешней области;

- понятие периметра многоугольника;

- формулу суммы углов выпуклого многоугольника;

- понятие параллелограмма, его признаки и свойства;

- понятие трапеции, равнобедренной и прямоугольной трапеции;

- понятие прямой и обратной теоремы;

- понятия прямоугольника, ромба и квадрата, их свойства и признаки;

- понятие симметричных точек и фигур относительно прямой и точки;

уметь

- объяснить, какая фигура называется многоугольником, назвать его элементы;

- выводить и пользоваться формулой суммы углов выпуклого многоугольника;

- доказывать и применять свойства и признаки параллелограмма и трапеции при решении задач;

- доказывать и применять свойства и признаки прямоугольника, ромба и квадрата при решении задач;

- выполнять чертежи по условию задачи;

- делить отрезок на n равных частей с помощью циркуля и линейки;

- решать задачи на построение;

- строить симметричные точки, распознавать фигуры, обладающие осевой и центральной симметрией;

использовать в практической деятельности

- умения строить и исследовать простейших математических моделей;

приобретать опыт

- алгоритмической деятельности при составлении математической модели заданной ситуации.


2.Площади фигур (14 ч. в том числе 1 к.р.)

Основные понятия:

Понятие площади многоугольника. Площади прямоугольника, параллелограмма, треугольника, трапеции. Теорема Пифагора.

Основная цель: сформировать понятие площади многоугольника, развить умение вычислять площади фигур, применяя изученные свойства и формулы, применять теорему Пифагора.

В результате изучения темы учащийся должен

знать/понимать

- основные свойства площадей;

- формулу для вычисления площади прямоугольника;

- формулы для вычисления площади параллелограмма, треугольника и трапеции;

- теорему об отношении площадей треугольников, имеющих по равному углу;

- теорему Пифагора и обратную ей теорему;

уметь

- вывести формулу площади прямоугольника, параллелограмма, треугольника и трапеции;

- доказывать теорему об отношении площадей треугольников, имеющих по равному углу;

- доказывать Пифагора и обратную ей теорему;

- применять все изученные формулы при решении задач;

- выполнять чертежи по условию задачи;

использовать в практической деятельности

- конструирования новых алгоритмов;

приобретать опыт

- вычислений при осуществлении алгоритмической деятельности.


  1. Подобные треугольники. (19 ч .в том числе 2 к.р.)

Основные понятия:

Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательствам теорем и решению задач. Соотношения между сторонами и углами треугольника.

Основная цель: сформировать понятия подобных треугольников, выработать умение применять признаки подобия треугольников, сформировать аппарат решения прямоугольного треугольника.


В результате изучения темы учащийся должен

знать/понимать

- понятие пропорциональных отрезков и подобных треугольников;

- теорему об отношении площадей подобных треугольников и свойство биссектрисы треугольника;

- признаки подобия треугольников;

- утверждении о пропорциональности отрезков, отсеченными параллельными прямыми на сторонах угла;

- теоремы о средней линии и пропорциональных отрезках в прямоугольном треугольнике;

- понятие синуса, косинуса, тангенса острого угла прямоугольного треугольника;

- основное тригонометрическое тождество;

- значения синуса, косинуса, тангенса для углов 30˚, 45˚, 60˚;

уметь

- доказывать признаки подобия треугольников;

- доказывать теоремы о средней линии и пропорциональных отрезках в прямоугольном треугольнике;

- доказывать основное тригонометрическое тождество;

- выполнять чертежи по условию задачи;

- применять все изученные формулы при решении задач;

- с помощью циркуля и линейки делить отрезок в данном отношении;

- решать задачи на построение;

использовать в практической деятельности

- умения строить и исследовать простейших математических моделей;

приобретать опыт

- алгоритмической деятельности при составлении математической модели заданной ситуации.


  1. Окружность (17 ч. в том числе 1 к.р.)

Основные понятия: Касательная к окружности и ее свойства. Центральные и вписанные углы. Четыре замечательные точки треугольника. Вписанная и описанная окружности.

Основная цель: систематизировать сведения об окружности и ее свойствах, вписанной или описанной окружностях.


В результате изучения темы учащийся должен

знать/понимать

- возможные случаи взаимного расположения прямой и окружности;

- понятие касательной, ее свойство и признак;

- понятие центрального и вписанного угла;

- как определяется градусная мера дуги окружности;

- теорему о вписанном угле, следствия из нее;

- теорему о произведении отрезков пересекающихся хорд;

- теорему о биссектрисе угла и о серединном перпендикуляре к отрезку, их следствия;

- теорему о пересечении высот треугольника;

- понятие окружности, вписанной в многоугольник, и окружности, описанной около многоугольника;

- теорему об окружности, вписанной в многоугольник, и об окружности, описанной около многоугольника;

- свойства вписанного и описанного четырехугольника;

- при каком условии четырехугольник является вписанным и описанным;

уметь

- доказывать признак и свойства касательной;

- доказывать теорему о произведении отрезков пересекающихся хорд;

- доказывать теорему о вписанном угле, следствия из нее;

- доказывать теорему о биссектрисе угла и о серединном перпендикуляре к отрезку, их следствия;

- доказывать теорему о пересечении высот треугольника;

- доказывать теорему об окружности, вписанной в многоугольник, и об окружности, описанной около многоугольника;

- доказывать свойства вписанного и описанного четырехугольника;

- выполнять чертежи по условию задачи;

- применять все изученные теоремы и утверждения при решении задач;

- доказывать подобие треугольников с использованием соответствующих признаков;

- вычислять элементы подобных треугольников;

использовать в практической деятельности

- умения строить и исследовать простейших математических моделей;

приобретать опыт

- алгоритмической деятельности при составлении математической модели заданной ситуации.

+2 часа итоговая контрольная работа по математике (промежуточная аттестация). Итого 170 часов в год.

Требования к уровню подготовки учащихся 9 классов

В результате изучения курса алгебры 9-го класса учащиеся

должны знать: значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

  • значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;

  • универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;  вероятностный характер различных процессов окружающего мира;


должны уметь: выполнять арифметические действия, сочетая устные и письменные приемы; находить значения корня натуральной степени, степени с рациональным показателем, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;

  • составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;

  • выполнять основные действия со степенями с целыми показателями, с многочленами и алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;

  • применять свойства арифметических квадратов корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;

  • решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные уравнения;

  • решать линейные и квадратные неравенства с одной переменной и их системы;

  • решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;

  • изображать числа точками на координатной прямой;

  • определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;

  • распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;

  • находить значения функции, заданной формулой, таблицей, графиком по её аргументу; находить значения аргумента по значению функции, заданной графиком или таблицей;

  • определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

  •  описывать свойства изученных функций, строить их графики;

  • извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;

  • решать комбинаторные задачи путём систематического перебора возможных вариантов и с использованием правила умножения;

  • вычислять средние значения результатов измерений;

  • находить частоту события, используя собственные наблюдения и готовые статистические данные;

  • находить вероятности случайных событий в простейших случаях;

владеть компетенциями:   познавательной, коммуникативной, информационной и рефлексивной;
способны решать следующие жизненно-практические задачи: самостоятельно приобретать и применять знания в различных ситуациях, работать в группах, аргументировать и отстаивать свою точку зрения, уметь слушать  других, извлекать учебную информацию на основе сопоставительного анализа объектов, пользоваться предметным указателем  энциклопедий  и справочников для нахождения информации, самостоятельно действовать в ситуации неопределённости при решении актуальных для них проблем.

Особое внимание уделяется разделу «Повторение», который состоит из двух блоков. Цель разбиения на два блока объясняется особенностью большинства обучающихся, характеризующейся низкой степенью мотивации к учению. Основная цель первого блока: отработать на уроке и при подготовке учащихся к экзамену базовые знания и умения. Поэтому наряду с прохождением темы «Комбинаторика. Статистика. Теория вероятностей» на уроках вводятся 10 минутные тренинги либо в форме устной разминки, либо индивидуальной работы по тестовым заданиям базового уровня. Домашнее задание в этом блоке сопровождается прохождением тестов в режиме On-lain, либо выполнением индивидуальных диагностических работ по соответствующей тематике. Для каждого учащего составляются индивидуальные маршруты. Во втором блоке осуществляется системное повторение по тематике курса с учетом решения практико-ориентированных заданий.

В результате изучения курса геометрии 9 класса обучающиеся должны:

знать/понимать

  • существо понятия математического доказательства; примеры доказательств;

  • существо понятия алгоритма; примеры алгоритмов;

  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

уметь

  • пользоваться языком геометрии для описания предметов окружающего мира;

  • распознавать геометрические фигуры, различать их взаимное расположение;

  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;

  • распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;

  • в простейших случаях строить сечения и развертки пространственных тел;

  • проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;

  • вычислять значения геометрических величин (длин, углов, площадей, объемов), в том числе: для углов от 0 до 180 определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;

  • решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;

  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

  • решать простейшие планиметрические задачи в пространстве;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания реальных ситуаций на языке геометрии;

  • расчетов, включающих простейшие тригонометрические формулы;

  • решения геометрических задач с использованием тригонометрии

  • решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

  • построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).

Содержание обучения по алгебре в 9 классе

Рациональные неравенства и их системы

Линейное и квадратное неравенство с одной переменной, частное и общее решение, равносильность, равносильные преобразования. Рациональные неравенства с одной переменной, метод интервалов, кривая знаков, нестрогие и строгие неравенства. Элемент множества, подмножество данного множества, пустое множество. Пересечение и объединение множеств. Системы линейных неравенств, частное и общее решение системы неравенств.

Основная цель:

  • формирование представлений о частном и общем решении рациональных неравенств и их систем, о неравенствах с модулями, о равносильности неравенств;

  • овладение умением совершать равносильные преобразования, решать неравенства методом интервалов;

  • расширение и обобщение сведений о рациональных неравенствах и способах их решения: метод интервалов, метод замены переменной.

системы уравнений

Рациональное уравнение с двумя переменными, решение уравнения с двумя переменными, равносильные уравнения, равносильные преобразования. График уравнения, система уравнений с двумя переменными, решение системы уравнений с двумя переменными. Метод подстановки, метод алгебраического сложения, метод введения новых переменных, графический метод, равносильные системы уравнений.

Основная цель:

  • формирование представлений о системе двух рациональных уравнений с двумя переменными, о рациональном уравнении с двумя переменными;

  • овладение умением совершать равносильные преобразования, решать уравнения и системы уравнений с двумя переменными;

  • отработка навыков решения уравнения и системы уравнений различными методами: графическим, подстановкой, алгебраического сложения, введения новых переменных.

Числовые функции

Функция, область определение и множество значений функции. Аналитический, графический, табличный, словесный способы задания функции. График функции. Монотонность (возрастание и убывание) функции, ограниченность функции снизу и сверху, наименьшее и наибольшее значения функции, непрерывная функция, выпуклая вверх или вниз. Элементарные функции. Четная и нечетная функции и их графики. Степенные функции с натуральным показателем, их свойства и графики. Свойства и графики степенных функций с четным и нечетным показателями, с отрицательным целым показателем.

Основная цель:

  • формирование представлений о таких фундаментальных понятиях математики, какими являются понятия функции, её области определения, области значения; о различных способах задания функции: аналитическом, графическом, табличном, словесном;

  • овладение умением применения четности или нечетности, ограниченности, непрерывности, монотонности функций;

  • формирование умений находить наибольшее и наименьшее значение на заданном промежутке, решая практические задачи;

  • формирование понимания того, как свойства функций отражаются на поведении графиков функций.

Прогрессии

Числовая последовательность. Способы задания числовой последовательности. Свойства числовых последовательностей, монотонная последовательность, возрастающая последовательность, убывающая последовательность. Арифметическая прогрессия, разность, возрастающая прогрессия, конечная прогрессия, формула n-го члена арифметической прогрессии, формула суммы членов конечной арифметической прогрессии, характеристическое свойство арифметической прогрессии. Геометрическая прогрессия, знаменатель прогрессии, возрастающая прогрессия, конечная прогрессия, формула n-го члена геометрической прогрессии, формула суммы членов конечной геометрической прогрессии, характеристическое свойство геометрической прогрессии.

Основная цель:

  • формирование преставлений о понятии числовой последовательности, арифметической и геометрической прогрессиях как частных случаях числовых последовательностей; о трех способах задания последовательности: аналитическом, словесном и рекуррентном;

  • сформировать и обосновать ряд свойств арифметической и геометрической прогрессий, свести их в одну таблицу;

  • овладение умением решать текстовые задачи, используя свойства арифметической и геометрической прогрессии.


элементы комбинаторики, статистики и теории вероятностей

Методы решения простейших комбинаторных задач (перебор вариантов, построение дерева вариантов, правило умножения). Факториал. Общий ряд данных и ряд данных конкретного измерения, варианта ряда данных, её кратность, частота и процентная частота, сгруппированный ряд данных, многоугольники распределения. Объем, размах, мода, среднее значение. Случайные события: достоверное и невозможное события, несовместные события, событие, противоположное данному событию, сумма двух случайных событий. Классическая вероятностная схема. Классическое определение вероятности.

Основная цель:

  • формирование преставлений о всевозможных комбинациях, о методах статистической обработки результатов измерений, полученных при проведении эксперимента, о числовых характеристиках информации;

  • овладеть умением решения простейших комбинаторных и вероятностных задач.

повторение

Основная цель:

  • обобщение и систематизация знаний по основным темам курса алгебры за 9 класс;

  • подготовка к единому государственному экзамену;

  • формирование понимания возможности использования приобретенных знаний и умений в практической деятельности и повседневной жизни.

Выражения и их преобразования. Буквенные выражения. Числовое значение буквенного выражения. Допустимые значения переменных, входящих в алгебраические выражения. Подстановка выражений вместо переменных. Равенство буквенных выражений. Тождество, доказательство тождеств. Преобразования выражений. Свойства степеней с целым показателем. Многочлены. Сложение, вычитание, умножение многочленов. Формулы сокращенного умножения. Разложение многочлена на множители. Квадратный трехчлен. Выделение полного квадрата в квадратном трехчлене. Теорема Виета. Разложение квадратного трехчлена на линейные множители. Многочлены с одной переменной. Степень многочлена. Корень многочлена. Алгебраическая дробь. Сокращение дробей. Действия с алгебраическими дробями. Рациональные выражения и их преобразования. Свойства квадратных корней и их применение в вычислениях.

Уравнения. Уравнение с одной переменной. Корень уравнения. Линейное уравнение. Квадратное уравнение: формула корней квадратного уравнения. Решение рациональных уравнений. Решение уравнений высших степеней; методы замены переменной, разложения на множители. Уравнение с двумя переменными; решение уравнения с двумя переменными.

Системы уравнений. Решение системы уравнений. Система двух линейных уравнений с двумя переменными; решение подстановкой и алгебраическим сложением. Уравнение с несколькими переменными. Решение нелинейных систем. Решения уравнений в целых числах.

Неравенства. Неравенство с одной переменной. Решение неравенства. Линейные неравенства с одной переменной и их системы. Квадратные неравенства. Решение дробно-линейных неравенств. Числовые неравенства и их свойства. Доказательство числовых и алгебраических неравенств.

Функции. Понятие функции. Область определения функции. Способы задания функции. График функции, возрастание и убывание функции, наибольшее и наименьшее значения функции, нули функции, промежутки знакопостоянства. Чтение графиков функций. Функции, описывающие прямую и обратную пропорциональную зависимости, их графики. Линейная функция, ее график, геометрический смысл коэффициентов. Гипербола. Квадратичная функция, ее график, парабола. Координаты вершины параболы, ось симметрии. Степенные функции с натуральным показателем, их графики. Графики функций: корень квадратный, корень кубический, модуль. Использование графиков функций для решения уравнений и систем. Примеры графических зависимостей, отражающих реальные процессы: колебание, показательный рост. Числовые функции, описывающие эти процессы. Параллельный перенос графиков вдоль осей координат и симметрия относительно осей.

Координаты и графики. Изображение чисел очками координатной прямой. Геометрический смысл модуля числа. Числовые промежутки: интервал, отрезок, луч. Формула расстояния между точками координатной прямой. Декартовы координаты на плоскости; координаты точки. Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение прямой, угловой коэффициент прямой, условие параллельности прямых. Уравнение окружности с центром в начале координат и в любой заданной точке. Графическая интерпретация уравнений с двумя переменными и их систем, неравенств с двумя переменными и их систем.

Арифметическая и геометрическая прогрессии. Понятие числовой последовательности. Формулы общего члена арифметической и геометрической прогрессий, суммы первых нескольких членов арифметической и геометрической прогрессий. Сложные проценты.

Решение текстовых задач алгебраическим способом. Переход от словесной формулировки соотношений между величинами к алгебраической.

Элементы логики, комбинаторики, статистики и теории вероятностей.

Определения, доказательства, аксиомы и теоремы; следствия. Контрпример. Доказательство от противного. Прямая и обратная теоремы. Множество. Элемент множества, подмножество. Объединение и пересечение множеств. Диаграммы Эйлера. Примеры решения комбинаторных задач: перебор вариантов, правило умножения. Статистические данные. Представление данных в виде таблиц, диаграмм, графиков. Средние результаты измерений. Понятие о статистическом выводе на основе выборки. Понятие и примеры случайных событий. Частота события, вероятность. Равновозможные события и подсчет их вероятности. Представление о геометрической вероятности.



Содержание обучения по геометрии в 9 классе

1.Векторы. Метод координат

Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Простей­шие задачи в координатах. Уравнения окружности и прямой. Применение векторов и координат при решении задач.

Цель: научить обучающихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач.

Вектор определяется как направленный отрезок и действия над векторами вводятся так, как это принято в физике, т. е. как действия с направленными отрезками. Основное внимание дол­жно быть уделено выработке умений выполнять операции над векторами (складывать векторы по правилам треугольника и па­раллелограмма, строить вектор, равный разности двух данных векторов, а также вектор, равный произведению данного вектора на данное число):

На примерах показывается, как векторы могут применяться к решению геометрических задач. Демонстрируется эффективность применения формул для координат середины отрезка, расстояния между двумя точками, уравнений окружности и прямой в конк­ретных геометрических задачах, тем самым дается представление об изучении геометрических фигур с помощью методов алгебры.

2.Соотношения между сторонами и углами треугольника. Скалярное произведение векторов

Синус, косинус и тангенс угла. Теоремы синусов и косину­сов. Решение треугольников. Скалярное произведение векторов и его применение в геометрических задачах.

Цель: развить умение обучающихся применять тригонометрический аппарат при решении геометрических задач.

Синус и косинус любого угла от 0° до 180° вводятся с помо­щью единичной полуокружности, доказываются теоремы синусов и косинусов и выводится еще одна формула площади треугольни­ки (половина произведения двух сторон на синус угла между ними). Этот аппарат применяется к решению треугольников.

Скалярное произведение векторов вводится как в физике (произведение для векторов на косинус угла между ними). Рас­сматриваются свойства скалярного произведения и его примене­ние при решении геометрических задач.

Основное внимание следует уделить выработке прочных на­выков в применении тригонометрического аппарата при реше­нии геометрических задач.

3.Длина окружности и площадь круга

Правильные многоугольники. Окружности, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности. Площадь круга.

Цель: расширить знание обучающихся о многоугольниках; рассмотреть понятия длины окружности и площади круга и формулы для их вычисления.

В начале темы дается определение правильного многоуголь­ника и рассматриваются теоремы об окружностях, описанной около правильного многоугольника и вписанной в него. С помо­щью описанной окружности решаются задачи о построении пра­вильного шестиугольника и правильного 2*n-угольника, если дан правильный n-угольник.

Формулы, выражающие сторону правильного многоугольника и радиус вписанной в него окружности через радиус описанной окружности, используются при выводе формул длины окружно­сти и площади круга. Вывод опирается на интуитивное представ­ление о пределе: при неограниченном увеличении числа сторон правильного многоугольника, вписанного в окружность, его пери­метр стремится к длине этой окружности, а площадь — к площа­ди круга, ограниченного окружностью.

4.Движение

Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрии. Параллельный перенос. Поворот. На­ложения и движения.

Цель: познакомить обучающихся с понятием движения и его свойствами, с основными видами движений, со взаимоотношениями наложений и движений.

Движение плоскости вводится как отображение плоскости на себя, сохраняющее расстояние между точками. При рассмотре­нии видов движении основное внимание уделяется построению образов точек, прямых, отрезков, треугольников при осевой и центральной симметриях, параллельном переносе, повороте. На эффектных примерах показывается применение движений при решении геометрических задач.

Понятие наложения относится в данном курсе к числу основ­ных понятий. Доказывается, что понятия наложения и движения являются эквивалентными: любое наложение является движени­ем плоскости и обратно. Изучение доказательства не является обязательным, однако следует рассмотреть связь понятий нало­жения и движения.

5.Начальные сведения из стереометрии.

Беседа об аксиомах геометрии.

Цель: дать более глубокое представление о си­стеме аксиом планиметрии и аксиоматическом методе.

В данной теме рассказывается о различных системах аксиом геометрии, в частности о различных способах введения понятия равенства фигур.

6.Повторение. Решение задач.

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс геометрии 9 класса.

Критерии и нормы оценки знаний, умений и навыков обучающихся по математике.

1. Оценка письменных контрольных работ обучающихся по математике.

Ответ оценивается отметкой «5», если:

  • работа выполнена полностью;

  • в логических рассуждениях и обосновании решения нет пробелов и ошибок;

  • в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

  • допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

  • допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

2. Оценка устных ответов обучающихся по математике

Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

  • изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

  • показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

  • продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

  • отвечал самостоятельно, без наводящих вопросов учителя;

  • возможны одна – две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

  • допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

  • допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

  • неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);

  • имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

  • при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;

  • обнаружено незнание учеником большей или наиболее важной части учебного материала;

  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Общая классификация ошибок.

При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

Грубыми считаются ошибки:

    • незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;

    • незнание наименований единиц измерения;

    • неумение выделить в ответе главное;

    • неумение применять знания, алгоритмы для решения задач;

    • неумение делать выводы и обобщения;

    • неумение читать и строить графики;

    • неумение пользоваться первоисточниками, учебником и справочниками;

    • потеря корня или сохранение постороннего корня;

    • отбрасывание без объяснений одного из них;

    • равнозначные им ошибки;

    • вычислительные ошибки, если они не являются опиской;

    • логические ошибки.

К негрубым ошибкам следует отнести:

    • неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;

    • неточность графика;

    • нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);

    • нерациональные методы работы со справочной и другой литературой;

    • неумение решать задачи, выполнять задания в общем виде.

Недочетами являются:

    • нерациональные приемы вычислений и преобразований;

    • небрежное выполнение записей, чертежей, схем, графиков.


УМК включает в себя:


  1. Алгебра. 7 класс. В 2 ч. Ч1. Учебник для общеобразовательных учреждений/А. Г. Мордкович. – 10-е изд., перераб. – М.: Мнемозина, 2007.

  2. Алгебра. 7 ласс. В 2 ч. Ч2. Задачник для общеобразовательных учреждений/под. Ред. А. Г. Мордковича. – 10-е изд., перераб. – М.:Мнемозина, 2007.

  3. Алгебра. 7 класс. Самостоятельные работы для учащихся образовательных учреждений/Л. А. Александрова; под ред. А. Г. Мордковича. – 4-е изд., стер. – М.: Мнемозина, 2008.

  4. Контрольные и самостоятельные работы по алгебре: 7 класс: к учебнику А. Г. Мордковича «Алгебра. 7 класс» / М. А. Попов, 5-е изд. перераб. и доп. – М.: Издательство «Экзамен», 2011 г.

  5. Контрольно-измерительные материалы. Алгебра: 7 класс/ сост. Л. И. Мартышова.-М.:ВАКО, 2012.

  6. Алгебра. 7кл.: Блицопрос. Пособие для учащихся общеобразовательных учреждений. – М.: Мнемозина, 2001.

  7. Поурочные разработки по алгебре. 7 клас. – М.:ВАКО, 2014.

  8. Рабочая тетрадь по алгебре. 7 класс: к учебнику А. Г. Мордковича «Алгебра. 7 класс» - М.: Издательство «Экзамен», 2015 г.

  9. Геометрия. 7-9 классы: учеб.для общеобразоват.организаций/ Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев-М.: Просвещение, 2014 г.

  10. Универсальне поурочные разработки по геометрии. 7 класс. – М.:ВАКО, 2015.

  11. Дидактические материалы по геометрии: 7 класс: к учебнику Л. С. Атанасяна и др. «Геометрия. 7-9 классы»/ Н. Б.Мельникова, Г. А.Захарова – М. : Издательство «Экзамен», 2014.

  12. Алгебра. 8 класс. В 2 ч. Ч1. Учебник для общеобразовательных учреждений/А. Г. Мордкович. – 10-е изд., перераб. – М.: Мнемозина, 2007.

  13. Алгебра. 8 класс. В 2 ч. Ч2. Задачник для общеобразовательных учреждений/под. Ред. А. Г. Мордковича. – 10-е изд., перераб. – М.:Мнемозина, 2007.

  14. Алгебра. 8 класс. Контрольные для учащихся образовательных учреждений/Л. А. Александрова; под ред. А. Г. Мордковича. – 4-е изд., стер. – М.: Мнемозина, 2010.

  15. Дидактические материалы по алгебре: 8 класс: к учебнику А. Г. Мордковича «Алгебра. 8 класс» / М. А. Попов, 5-е изд. перераб. и доп. – М.: Издательство «Экзамен», 2014 г.

  16. Алгебра. 8 кл.: Блицопрос. Пособие для учащихся общеобразовательных учреждений. – М.: Мнемозина, 2013.

  17. Поурочные разработки по алгебре. 8 класс. – М.:ВАКО, 2010.

  18. Геометрия. 7-9 классы: учеб.для общеобразоват.организаций/ Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев-М.: Просвещение, 2014 г.

  19. Универсальные поурочные разработки по геометрии. 8 класс. – М.:ВАКО, 2011.

  20. Геометрия. 8 класс. Рабочая тетрадь для тренировки и мониторинга: учебно-методическое пособие/под ред. Ф. Ф. Лысенко-Легион, 2014 г.

  21. А.Г.Мордкович, П.В. Семенов. Алгебра – 9. Часть 1. Учебник. М.: Мнемозина, 2008.

  22. А.Г.Мордкович, Е.Е.Тульчинская, Т.Н.Мишустина, П.В. Семенов. Алгебра – 9. Часть 2. Задачник. М.: Мнемозина, 2008.

  23. Л.А. Александрова. Алгебра - 9. Контрольные работы / Под ред. А.Г.Мордковича. М.: Мнемозина, 2008.

  24. Л.А. Александрова. Алгебра - 9. Самостоятельные работы / Под ред. А.Г.Мордковича. М.: Мнемозина, 2008. Геометрия, 7 – 9: Учеб. для общеобразоват. учреждений/ Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – М.: Просвещение, 2007.

  25. С.М. Саакян, В.Ф. Бутузов. Изучение геометрии в 7-9 классах: Методические рекомендации к учебнику. Книга для учителя. – М.: Просвещение, 2001.

Интернет-ресурсы

Вся элементарная математика: Средняя математическая интернет-школа

http://www.bymath.net

Графики функций

http://graphfunk.narod.ru

Задачник для подготовки к олимпиадам по математике

http://tasks.ceemat.ru

Занимательная математика — школьникам (олимпиады, игры, конкурсы по математике)

http://www.math-on-line.com

Интернет-проект «Задачи»

http://www.problems.ru

Математические этюды

http://www.etudes.ru

Математические олимпиады и олимпиадные задачи

http://www.zaba.ru

Международный математический конкурс «Кенгуру»

http://www.kenguru.sp.ru

Методика преподавания математики

http://methmath.chat.ru

Московская математическая олимпиада школьников

[link] Повторение (9 часов по алгебре, в т.ч. 2 часа итог.к.р., 5 часов по геометрии)

156

Упрощение алгебраических выражений. Нахождение значений числовых и алгебраических выражений.

Знают способы преобразования рациональных выражений. Выражают переменную из формулы


Учащиеся имеют представление об алгоритме решения линейных, квадратных уравнений, рациональных уравнений и умеют применять его при решении задач

Учащиеся знают методы решения систем уравнений (подстановки, алгебраического сложения), решают системы уравнений с двумя переменными

Развитие умения грамотно выполнять алгоритмические предписания.



Выполнение работы по предъявленному алгоритму

1

10.05


157

Решение линейных уравнений. Решение квадратных уравнений

1

11.05


158

Линейные уравнения, содержащие модуль

1

12.05


159

Решение систем уравнений

1

15.05


160

Линейные неравенства. Квадратные неравенства

1

16.05


161

Метод интервалов

1

17.05


162

Решение систем неравенств.

1

18.05


163

Решение текстовых задач на составление уравнений и систем уравнений.

1

19.05



164, 165

Итоговая контрольная работа № 11 (промежуточная аттестация)

2

22.05,

22.05


166

Треугольники



1

23.05


167

Четырёхугольники

1

23.05


168

Окружность. Вписанные и центральные углы

1

24.05


169

Площади

1

24.05


170

Подобие фигур

1

25.05


Итого 170 часов