Рабочая программа по математике (8 класс).

Автор публикации:

Дата публикации:

Краткое описание: ...




«Рассмотрено»

На заседании МО: протокол

от «__» августа 2016 г. № ___.

Руководитель МО:

______________ /Т.Ф. Киямов/


«Согласовано»

Заместитель директора по МР:

_________ /Г.М. Гильмутдинова/

«__» августа 2016 г.


«Утверждено»

Принято педагогическим советом: протокол от «__» августа 2016 г. № __.

Введено приказом

от «__» августа 2016 г. № ____.

Директор: ________ /Р.Р. Сафиуллин/





Муниципальное бюджетное общеобразовательное учреждение

«Лицей-интернат №79»





РАБОЧАЯ ПРОГРАММА

ПО ПРЕДМЕТУ «МАТЕМАТИКА»

для 8АБ(I) класса









Составил: Шафиков Насим Расимович — учитель математики высшей квалификационной катего-рии МБОУ «Лицей-интернат №79














г. Набережные Челны, 2016 год

Пояснительная записка


Рабочая программа по математике составлена на основе:

  • Федерального компонента государственного стандарта основного общего образования;

  • основной образовательной программы МБОУ «Лицей-интернат №79»;

  • примерной программы по алгебре и геометрии для общеобразовательных учреждений;

  • учебного плана МБОУ «Лицей-интернат №79» на 2016-2017 учебный год;

  • локального акта МБОУ «Лицей-интернат №79» «Положение об утверждении порядка разработки и утверждения рабочих программ».

Федеральный базисный учебный план для образовательных учреждений Российской Федерации предусматривает обязательное изучение математики в количестве 5 часов в неделю. В МБОУ «Лицей-интернат №79» начиная с 6-го класса, предусмотрено углубленное изучение математики. Для этого в 8 классах из часов школьного компонента дополнительно выделен 1 час. Итого 6 часов в неделю или 204 часа в год.


Количество часов в год по примерной программе

Распределение 34 дополнительных часов в год

Общее количество часов в год

Вводное повторение.

-

6

6

Алгебраические дроби.

20

-

20

Квадратный корень.

8

4

12

Свойства квадратного корня. Функция .

15

-

15

Площадь.

15

-

15

Подобные треугольники.

18

7

25

Квадратичная функция. Функция .

23

-

23

Квадратные уравнения.

15

-

15

Окружность.

18

-

18

Неравенства.

14

-

14

Векторы.

11

-

11

Алгебраические уравнения.

13

5

18

Элементы теории делимости.

-

6

6

Итоговое повторение.

-

6

6

ИТОГО

170

34

204


Преподавание курса математики в 8 классе ориентировано на использование следующих учебно-методических комплектов:

  • Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений (для классов с повышенным уровнем математической подготовки)/ А.Г. Мордкович, Н.П. Николаев. — М.: «Мнемозина», 2011.

  • Алгебра. 8 класс. В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных учреждений (для классов с повышенным уровнем математической подготовки)/ А.Г. Мордкович, Н.П. Николаев. — М.: «Мнемозина», 2011.

  • Геометрия. 7-9 классы: учебник для общеобразовательных учреждений / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев, Э.Г. Позняк, И.И. Юдина. — М.: «Просвещение», 2013.


Требования к уровню подготовки обучающихся


В результате изучения математики ученик должен

знать/понимать:

  • понятие алгебраической дроби, основное свойство алгебраической дроби;

  • алгоритм сокращения дробей и приведения к общему знаменателю;

  • правила сложения и вычитания алгебраических дробей с одинаковыми и разными знаменателями;

  • правила умножения и деления алгебраических дробей; правило возведения алгебраической дроби в степень;

  • правило преобразования рациональных выражений; правило решения рациональных уравнений;

  • понятие и обозначения множества натуральных, действительных, рациональных, иррациональных, целых чисел;

  • понятие модуля действительного числа; свойства и геометрический смысл модуля;

  • понятие квадратного корня; правила вычисления квадратного корня из неотрицательного числа;

  • основные свойства площадей; формулу для вычисления площади прямоугольника;

  • формулы для вычисления площади параллелограмма, треугольника и трапеции;

  • теорему об отношении площадей треугольников, имеющих по равному углу; теорему Пифагора и обратную ей теорему;

  • основные свойства и правила построения графика функции ; правила построения графика при помощи параллельного переноса;

  • свойства квадратного корня; правило избавления от иррациональности в знаменателе;

  • алгоритм упрощения сложных выражений;

  • понятие пропорциональных отрезков и подобных треугольников;

  • теорему об отношении площадей подобных треугольников и свойство биссектрисы треугольника;

  • признаки подобия треугольников; утверждении о пропорциональности отрезков, отсеченными параллельными прямыми на сторонах угла;

  • теоремы о средней линии и пропорциональных отрезках в прямоугольном треугольнике;

  • понятие синуса, косинуса, тангенса острого угла прямоугольного треугольника;

  • основное тригонометрическое тождество; значения синуса, косинуса, тангенса для углов 30˚, 45˚, 60˚;

  • виды функций: линейная, квадратичная, прямая и обратная пропорциональности, кусочно-гладкая;

  • основные свойства функций; алгоритм построения графиков функций;

  • алгоритм графического решения уравнений;

  • понятия квадратного уравнения, корня квадратного уравнения, неполного квадратного уравнения; формулы корней квадратного уравнения;

  • алгоритм решения полных и неполных квадратных уравнений; теорему Виета;

  • алгоритм разложения квадратного трехчлена на множители;

  • понятие рационального уравнения, биквадратные уравнения; понятие иррационального уравнения;

  • возможные случаи взаимного расположения прямой и окружности;

  • понятие касательной, ее свойство и признак; понятие центрального и вписанного угла;

  • как определяется градусная мера дуги окружности; теорему о вписанном угле, следствия из нее;

  • теорему о произведении отрезков пересекающихся хорд; теорему о биссектрисе угла и о серединном перпендикуляре к отрезку, их следствия;

  • теорему о пересечении высот треугольника;

  • понятие окружности, вписанной в многоугольник, и окружности, описанной около многоугольника;

  • теорему об окружности, вписанной в многоугольник, и об окружности, описанной около многоугольника;

  • свойства вписанного и описанного четырехугольника; при каком условии четырехугольник является вписанным и описанным;

  • понятие и свойства числовых неравенств; понятие и правила решения линейных неравенств;

  • понятие и правила решения квадратного неравенства;

  • понятие вектора, его длины; понятие равенства векторов; операции над векторами;

  • правила сложения векторов способом треугольника и параллелограмма;

  • понятие средней линии трапеции;

  • понятие многочлена от одной переменной; понятия общих делителей и общих кратных нескольких многочленов;

  • понятие биквадратного уравнения; рациональные и иррациональные уравнения, уравнения с модулем;

  • понятие равносильности уравнений; задачи с параметрами и способы их решения;

  • признаки делимости чисел; понятие простых и составных чисел; деление с остатком;

  • понятия НОК и НОД; основную теорему арифметики;


уметь:

  • находить значения алгебраических дробей, область допустимых значений для дробей;

  • сокращать дроби и приводить к одинаковому знаменателю;

  • выполнять арифметические действия с алгебраическими дробями; возводить дробь в степень;

  • упрощать выражения, доказывать тождества; решать рациональные уравнения;

  • различать множества чисел; переводить периодические дроби в обыкновенные;

  • изображать числа точками на координатной прямой; работать с модулем;

  • извлекать квадратный корень из числа; находить приближенное значение корня с помощью калькулятора;

  • вывести формулу площади прямоугольника, параллелограмма, треугольника и трапеции;

  • доказывать теорему об отношении площадей треугольников, имеющих по равному углу; доказывать Пифагора и обратную ей теорему;

  • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу;

  • находить значение аргумента по значению функции, заданной графиком или таблицей;

  • определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

  • описывать свойства изученных функций, строить их графики; изображать числа точками на координатной прямой;

  • определять координаты точки плоскости, строить точки с заданными координатами;

  • строить графики функций с помощью параллельного переноса;

  • вычислять квадратный корень из чисел и выражений, используя свойства; выносить/вносить множитель из-под/под корня;

  • пользоваться свойствами квадратных корней;

  • доказывать признаки подобия треугольников;

  • доказывать теоремы о средней линии и пропорциональных отрезках в прямоугольном треугольнике;

  • доказывать основное тригонометрическое тождество;

  • с помощью циркуля и линейки делить отрезок в данном отношении;

  • определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

  • строить графики функций с помощью параллельного переноса;

  • решать квадратные уравнения различными способами: метод разложения на множители, метод выделения полного квадрата, графические методы, с использованием формул корней квадратного уравнения (общая и с четным вторым коэффициентом), теоремы Виета;

  • решать неполные квадратные уравнения; решать и оформлять задачи с помощью квадратных и рациональных уравнений;

  • решать рациональные и биквадратные уравнения и уравнения, решаемые с помощью замены переменной;

  • раскладывать квадратный трехчлен на множители; решать иррациональные уравнения

  • доказывать признак и свойства касательной; доказывать теорему о произведении отрезков пересекающихся хорд;

  • доказывать теорему о вписанном угле, следствия из нее;

  • доказывать теорему о биссектрисе угла и о серединном перпендикуляре к отрезку, их следствия;

  • доказывать теорему о пересечении высот треугольника;

  • доказывать теорему об окружности, вписанной в многоугольник, и об окружности, описанной около многоугольника;

  • доказывать свойства вписанного и описанного четырехугольника;

  • выполнять чертежи по условию задачи; применять все изученные теоремы и утверждения при решении задач;

  • доказывать подобие треугольников с использованием соответствующих признаков; вычислять элементы подобных треугольников

  • сравнивать числа и выражения; пользоваться свойствами числовых неравенств;

  • решать линейные неравенства и показывать решение на координатной прямой; решать задачи с помощью неравенств;

  • решать квадратные неравенства с помощью параболы, методом интервалов;

  • находить длину вектора; определять равные векторы; производить различные операции над векторами способом треугольника и параллелограмма; находить сумму нескольких векторов; находить среднюю линию трапеции;

  • делить многочлен на многочлен столбиком; разлагать многочлен на множители; решать некоторые уравнения высших степеней, биквадратные уравнения; решать рациональные и иррациональные уравнения, уравнения с модулем;

  • приводить и использовать равносильные уравнения; решать задачи с параметрами;

  • производить деление с остатком; находить НОК и НОД;

  • использовать основную теорему арифметики при решении задач на делимость чисел.

Содержание программы учебного предмета


АРИФМЕТИКА

Натуральные числа. Делимость натуральных чисел. Признаки делимости на 2, 3, 5, 9, 10. Простые и составные числа. Разложение натурального числа на простые множители. Наибольший общий делитель и наименьшее общее кратное. Деление с остатком.

Действительные числа. Квадратный корень из числа. Нахождение приближенного значения корня с помощью калькулятора.

Понятие об иррациональном числе. Иррациональность числа. Десятичные приближения иррациональных чисел.

Действительные числа как бесконечные десятичные дроби. Сравнение действительных чисел, арифметические действия над ними.

Этапы развития представления о числе.

Текстовые задачи. Решение текстовых задач арифметическим способом.

АЛГЕБРА

Алгебраические выражения. Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных, входящих в алгебраические выражения.

Квадратный трехчлен. Выделение полного квадрата в квадратном трехчлене. Теорема Виета. Разложение квадратного трехчлена на линейные множители. Многочлены с одной переменной. Степень многочлена. Корень многочлена.

Алгебраическая дробь. Сокращение дробей. Действия с алгебраическими дробями.

Рациональные выражения и их преобразования. Свойства квадратных корней и их применение в вычислениях.

Уравнения и неравенства. Уравнение с одной переменной. Корень уравнения. Линейное уравнение. Квадратное уравнение: формула корней квадратного уравнения. Решение рациональных уравнений. Примеры решения уравнений высших степеней; методы замены переменной, разложения на множители.

Неравенство с одной переменной. Решение неравенства. Линейные неравенства с одной переменной и их системы. Квадратные неравенства.

Числовые неравенства и их свойства. Доказательство числовых и алгебраических неравенств.

Переход от словесной формулировки соотношений между величинами к алгебраической.

Решение текстовых задач алгебраическим способом.

Числовые функции.

Гипербола. Квадратичная функция, ее график, парабола. Координаты вершины параболы, ось симметрии. Графики функций: корень квадратный, модуль. Использование графиков функций для решения уравнений и систем.

Параллельный перенос графиков вдоль осей координат и симметрия относительно осей.

ГЕОМЕТРИЯ

Треугольник. Подобие треугольников; коэффициент подобия. Признаки подобия треугольников.

Теорема Пифагора. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника. Решение прямоугольных треугольников.

Замечательные точки треугольника: точки пересечения серединных перпендикуляров, биссектрис, медиан. Окружность Эйлера.

Окружность и круг. Центр, радиус, диаметр. Дуга, хорда. Сектор, сегмент. Центральный, вписанный угол; величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности; равенство касательных, проведенных из одной точки. Метрические соотношения в окружности: свойства секущих, касательных, хорд.

Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Вписанные и описанные четырехугольники.

Измерение геометрических величин. Длина отрезка. Длина ломаной, периметр многоугольника.

Расстояние от точки до прямой. Расстояние между параллельными прямыми. Величина угла. Градусная мера угла, соответствие между величиной угла и длиной дуги окружности.

Понятие о площади плоских фигур. Равносоставленные и равновеликие фигуры.

Площадь прямоугольника. Площадь параллелограмма, треугольника и трапеции (основные формулы). Формула Герона. Площадь четырехугольника.

Связь между площадями подобных фигур.

Векторы

Вектор. Длина (модуль) вектора. Координаты вектора. Равенство векторов. Операции над векторами: умножение на число, сложение.

Геометрические преобразования

Симметрия фигур. Осевая симметрия и параллельный перенос. Центральная симметрия. Понятие о гомотетии. Подобие фигур.



Календарно-тематическое планирование


урока

Изучаемый раздел, тема учебного материала

Кол-во часов

Дата проведения

Примечания

план

факт

1

2

3

4

5

6


Вводное повторение

6




1

Повторение темы «Функция».

1




2

Повторение темы «Многочлены».

1




3

Повторение темы «Разложение многочлена на множители».

1




4

Повторение темы «Треугольники».

1




5

Повторение темы «Четырехугольники».

1




6

Входная контрольная работа №1.

1





Алгебраические дроби

20




7

Алгебраическая дробь.

1




8

Основное свойство алгебраической дроби.

1




9

Сокращение алгебраических дробей.

1




10

Приведение алгебраических дробей к общему знаменателю.

1




11-13

Сложение и вычитание алгебраических дробей.

3






14-15

Умножение и деление алгебраических дробей.

2




16-17

Возведение алгебраической дроби в степень.

2




18-19

Рациональные выражения. Преобразование рациональных выражений.

2




20-23

Представления о рациональных уравнениях. Решение рациональных уравнений.

4







24-25

Степень с отрицательным целым показателем и ее свойства.

2




26

Контрольная работа №2 «Алгебраические дроби».

1





Квадратный корень

12




27-28

Рациональные числа. Бесконечная десятичная периодическая дробь.

2




29-30

Понятие квадратного корня из неотрицательного числа.

2




31-32

Иррациональные числа. Иррациональность числа. Десятичные приближения иррациональных чисел.

2




33

Действительные числа как бесконечные десятичные дроби.

1




34

Нахождение приближенного значения корня с помощью калькулятора.

1




35-36

Свойства числовых неравенств. Сравнение действительных чисел. Арифметические действия над действительными числами.

2




37

Этапы развития представлений о числе.

1




38

Контрольная работа №3 «Квадратный корень».

1





Свойства квадратного корня. Функция .

15




39-40

Функция , ее свойства и график.

2





41-42

Свойства квадратных корней.

2





43-46

Преобразование выражений, содержащих операцию извлечения квадратного корня.

4







47

Алгоритм извлечения квадратного корня.

1




48

Модуль действительного числа и его свойства.

1




49

Геометрический смысл модуля действительного числа.

1




50

Тождество √a2 = |a|.

1




51

Функция y = |x|.

1




52

Разные графики функций с модулями.

1




53

Контрольная работа №4 «Свойства квадратного корня».

1





Площадь

15




54

Понятие о площади плоских фигур. Равносоставленные и равновеликие фигуры.

1




55

Понятие о площади многоугольника. Площадь квадрата. Площадь прямоугольника.

1




56

Площадь параллелограмма.

1




57-58

Площадь треугольника.

2





59

Площадь трапеции.

1




60-61

Теорема Пифагора.

2





62

Теорема, обратная теореме Пифагора.

1




63-64

Формула Герона.

2





65-67

Решение задач по теме «Площадь».

3






68

Контрольная работа №5 «Площадь».

1





Подобные треугольники

25




69

Пропорциональные отрезки.

1




70

Подобие треугольников. Коэффициент подобия.

1




71

Отношение площадей подобных треугольников.

1




72

Связь между площадями подобных фигур.

1




73-74

Первый признак подобия треугольников.

2





75-76

Второй признак подобия треугольников.

2





77

Третий признак подобия треугольников.

1




78

Решение задач по теме «Подобные треугольники».

1




79

Контрольная работа №6 «Признаки подобия треугольников».

1




80

Средняя линия треугольника.

1




81-82

Пропорциональные отрезки в прямоугольном треугольнике.

2






83

Практические приложения подобия треугольников.

1




84

О подобии произвольных фигур.

1




85-86

Соотношения между сторонами и углами прямоугольного треугольника.

2




87-88

Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника.

2




89

Основное тригонометрическое тождество.

1




90-91

Значения синуса, косинуса, тангенса и котангенса для углов 300, 450 и 600.

2




92

Решение задач на применение подобия треугольников.

1




93

Контрольная работа №7 «Применение подобия треугольников».

1





Квадратичная функция

23




94-96

Функция y = kx2, ее свойства и график. Парабола.

3






97-99

Функция y = k/x, ее свойства и график. Гипербола.

3






100-101

График функции y = f(x+l).

2





102-103

График функции y = f(x)+m.

2





104-105

График функции y = f(x+l)+m.

2





106-108

Функция y = ax2+bx+c, ее свойства и график.

3






109-110

Графическое решение квадратных уравнений.

2




111-113

Дробно-линейная функция.

3






114

График функции y = |f(x)|.

1




115

График функции y = f(|x|).

1




116

Контрольная работа №8 «Квадратичная функция».

1





Квадратные уравнения

15




117-118

Понятие квадратного уравнения. Неполные квадратные уравнения.

2





119-121

Формула корней квадратного уравнения.

3






122-124

Теорема Виета.

3






125-126

Разложение квадратного трехчлена на линейные множители.

2




127-130

Рациональные уравнения как математические модели реальных ситуаций.

4







131

Контрольная работа №9 «Квадратные уравнения».

1






Окружность

18




132

Взаимное расположение прямой и окружности.

1




133

Касательная и секущая к окружности. Равенство касательных, проведенных из одной точки.

1




134

Градусная мера дуги окружности. Центральный угол.

1




135-136

Вписанный угол. Величина вписанного угла. Теорема о вписанном угле.

2




137-139

Метрические соотношения в окружности: свойства секущих, касательных, хорд.

3






140

Свойства биссектрисы угла.

1




141

Свойства серединного перпендикуляра к отрезку.

1




142

Теорема о пересечении высот треугольника.

1




143-144

Точки пересечения серединных перпендикуляров, биссектрис, медиан. Замечательные точки треугольника. Окружность Эйлера.

2




145

Окружность, вписанная в треугольник.

1




146

Окружность, описанная около треугольника.

1




147

Вписанные и описанные четырехугольники.

1




148

Решение задач по теме «Окружность».

1




149

Контрольная работа №10 «Окружность».

1





Неравенства

14




150-153

Линейные неравенства.

4







154-157

Квадратные неравенства.

4







158-159

Доказательство неравенств.

2





160

Приближенные вычисления.

1




161-162

Стандартный вид положительного числа.

2





163

Контрольная работа №11 «Неравенства».

1





Векторы

11




164

Вектор. Длина (модуль) вектора. Равенство векторов.

1




165

Откладывание вектора от данной точки.

1




166

Операции над векторами. Сложение векторов.

1




167

Правила треугольника и правило параллелограмма сложения векторов.

1




168

Сумма нескольких векторов. Вычитание векторов.

1




169

Произведение вектора на число.

1




170-171

Применение векторов к решению задач.

2





172

Средняя линия трапеции.

1




173

Решение задач по теме «Векторы».

1




174

Контрольная работа №12 «Векторы».

1





Алгебраические уравнения

18




175

Многочлены от одной переменной.

1




176

Деление многочлена на многочлен.

1




177

Разложение многочлена на множители.

1




178

Общие делители и общие кратные нескольких многочленов.

1




179-181

Уравнения высших степеней. Биквадратное уравнение.

3






182-184

Рациональные уравнения.

3






185-186

Уравнения с модулем.

2





187-188

Иррациональные уравнения.

2





189

Равносильность уравнений.

1




190-191

Задачи с параметрами.

2





192

Контрольная работа №13 «Алгебраические уравнения».

1





Элементы теории делимости

6




193

Делимость чисел.

1




194

Простые и составные числа.

1




195

Деление с остатком.

1




196

Наибольший общий делитель.

1




197

Наименьшее общее кратное.

1




198

Основная теорема арифметики.

1





Итоговое повторение

6




199

Повторение курса математики 8 класса.

1




200

Подготовка к итоговой контрольной работе.

1




201

Итоговая контрольная работа №14.

1




202

Решение задач по алгебре.

1




203

Решение задач по геометрии.

1




204

Подведение итогов.

1





Оценочные материалы


Входная контрольная работа №1

Вариант 1

  1. Решите уравнение: .

  2. Вычислите: .

  3. Сократите дробь: .

  4. Решите графически уравнение: .

  5. Постройте график функции: Для данной функции найдите: а) область определения; б) множество значений функции.

  6. Решите задачу при помощи системы уравнений. Поезд прошел первый перегон за 2 ч, а второй за 3 ч. Всего за это время он прошел 330 км. Найдите скорость поезда на каждом перегоне, если на втором перегоне она была на 10 км/ч больше, чем на первом.

  7. Дано: А={1;3;5;9}, B={2;4;10}, E={1;2;3;4;5;6;7;8;9;10}. Найдите множество: .

  8. Для ряда 1, 6, 1, 4, 3, 2, 1, 5, 9, 4 составьте упорядоченный ряд данных. Найдите объём, среднее арифметическое, размах, моду и медиану данного ряда. Какова частота моды этого ряда в процентах? Какова вероятность того, что случайна выбранная цифра, окажется равной 4?

  9. Равные отрезки AB и CD точкой пересечения О делятся в отношении AO:OB=CO:OD=2:1. Докажите равенство треугольников ACD и CAB. Найдите угол OAD, если угол OCB равен 500.

  10. В прямоугольнике середины смежных сторон соединили отрезками. Докажите, что полученная фигура является ромбом.

Вариант 2

  1. Решите уравнение: .

  2. Вычислите: .

  3. Сократите дробь: .

  4. Решите графически уравнение: .

  5. Постройте график функции: Для данной функции найдите: а) область определения; б) множество значений функции.

  6. Решите задачу при помощи системы уравнений. Туристы прошли 24 км, причем 3 ч дорога шла в гору, а 2 ч — под гору. С какой скоростью туристы шли в гору и с какой под гору, если на первом участке они проходили в час на 2 км меньше, чем на втором?

  7. Дано: А={1;3;5;9}, B={2;4;5;9}, E={1;2;3;4;5;6;7;8;9;10}. Найдите множество: .

  8. Для ряда 2, 7, 2, 5, 4, 3, 2, 6, 8, 5 составьте упорядоченный ряд данных. Найдите объём, среднее арифметическое, размах, моду и медиану данного ряда. Какова частота моды этого ряда в процентах? Какова вероятность того, что случайна выбранная цифра, окажется равной 5?

  9. Равные отрезки AB и CD точкой пересечения О делятся в отношении AO:OB=CO:OD=3:1. Докажите равенство треугольников BAD и DCB. Найдите угол OBC, если угол ODA равен 400.

  10. В квадрате середины смежных сторон соединили отрезками. Докажите, что полученная фигура является также квадратом.



Контрольная работа №2 «Алгебраические дроби»

[pic]

[pic]

[pic]

[pic]









Контрольная работа №3 «Квадратный корень»

[pic]

[pic]

[pic]

[pic]










Контрольная работа №4 «Свойства квадратного корня»

[pic]

[pic]

[pic]

[pic]









Контрольная работа №5 «Площадь».

[pic]

[pic]

[pic]

[pic]







Контрольная работа №6 «Признаки подобия треугольников»

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]




Контрольная работа №7 «Применение подобия треугольников»

[pic]

[pic]

[pic]

[pic]







Контрольная работа №8 «Квадратичная функция»

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]












Контрольная работа №9 «Квадратные уравнения»

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]





Контрольная работа №10 «Окружность»

[pic]

[pic]

[pic]

[pic]

[pic]







Контрольная работа №11 «Неравенства»

[pic]

[pic]






Контрольная работа №12 «Векторы»

[pic]

[pic]

[pic]

[pic]




Контрольная работа №13 «Алгебраические уравнения»

[pic]

[pic]

[pic]

[pic]





Итоговая контрольная работа №14

Вариант I

  1. Решите уравнение .

  2. Решите систему неравенств:

  3. Бассейн наполняется двумя трубами за 3 ч. Первая труба, действуя одна, может заполнить бассейн на 8 ч медленнее, чем вторая. За сколько часов наполнит бассейн одна вторая труба?

  4. Постройте график функции . Найдите область определения, область значений, промежутки возрастания и убывания.

  5. В равнобедренный треугольник с боковой стороной 15 см и периметром 54 см вписана окружность. Найдите радиус этой окружности.

Вариант II

  1. Решите уравнение .

  2. Решите систему неравенств:

  3. Две бригады, работая вместе, могут выполнить заказ за 2 ч. Первая бригада, работая одна, может выполнить заказ на 3 ч медленнее, чем вторая. За сколько часов может выполнить заказ одна вторая бригада?

  4. Постройте график функции . Найдите область определения, область значений, промежутки возрастания и убывания.

  5. В равнобедренный треугольник с основанием 12 см и периметром 32 см вписана окружность. Найдите радиус этой окружности.