[link] владеть алгоритмами решения основных задач на построение;
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
описания реальных ситуаций на языке геометрии;
решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);
построений геометрическими инструментами (линейка, угольник, циркуль, транспортир);
владения практическими навыками использования геометрических инструментов для
изображения фигур, а также нахождения длин отрезков и величин углов.
Виды и формы контроля
Виды контроля:
входной;
контроль итоговый.
устный (фронтальный опрос, развернутый ответ, устный счет);
письменный (индивидуальное задание, математический диктант, самостоятельная работа, тестирование, практическая работа, контрольная работа)
Текущий контроль (проводится в течение всего обучения, на каждом уроке, причем почти на каждом его этапе)
Индивидуальная форма контроля (каждый школьник получает свое задание, которое он должен выполнять без посторонней помощи – применяется, если требуется выяснить индивидуальные знания, способности и возможности отдельных учащихся)
Групповая форма контроля (класс делится на несколько групп от 2 до 10 учащихся и каждой группе дается проверочное задание - применяют при повторении с целью обобщения и систематизации учебного материала, при выделении приемов и методов решения задач, при акцентировании внимания учащихся на наиболее рациональных способах выполнения заданий, на лучшем из вариантов доказательства теоремы и т. п.).
Фронтальная форма контроля (задания предлагаются всему классу - изучается правильность восприятия и понимания учебного материала, качество словесного, графического предметного оформления, степень закрепления в памяти).
Тематический контроль (осуществляется периодически, после изучения темы или нового раздела и имеет целью систематизацию знаний учащихся - осуществляется на повторительно-обобщающих уроках и способствует подготовке к контрольным мероприятиям: устных и письменных зачетов).
Итоговый контроль (проводится в форме экзаменов или годовых контрольных работ - проверяются знания по важнейшим разделам и темам курса или курсу в целом).
Математический диктант (для усвоения текущего материала, для обобщения пройденного)
Тест (задания, состоящие из ряда вопросов и нескольких вариантов ответа – проверить большой объем изученного материала малыми порциями, быстро диагностировать овладение учебным материалом большим массивом учащихся)
Перечень контрольных работ
Раздел Вид работы
Повторение курса геометрии 7 класса
Входная контрольная работа
Четырехугольники
Контрольная работа №1 по теме "Многоугольники"
Площадь
Контрольная работа №2 по теме "Площади многоугольников"
Подобные треугольники
Контрольная работа №3 по теме "Подобные треугольники"
Контрольная работа №4 по теме "Подобные треугольники"
Окружность
Контрольная работа №5 по теме "Окружность"
Итоговое повторение
Итоговая контрольная работа
Критерии и нормы оценки знаний, умений и навыков обучающихся по математике.
Оценка письменных контрольных и самостоятельных работ обучающихся по математике.
Ответ оценивается отметкой «5», если:
работа выполнена полностью;
в логических рассуждениях и обосновании решения нет пробелов и ошибок;
в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).
Отметка «4» ставится в следующих случаях:
работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).
Отметка «3» ставится, если:
Отметка «2» ставится, если:
Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.
Оценка устных ответов обучающихся по математике
Ответ оценивается отметкой «5», если ученик:
полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;
правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;
продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;
отвечал самостоятельно, без наводящих вопросов учителя;
возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.
Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:
в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;
допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.
Отметка «3» ставится в следующих случаях:
неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);
имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.
Отметка «2» ставится в следующих случаях:
не раскрыто основное содержание учебного материала;
обнаружено незнание учеником большей или наиболее важной части учебного материала;
допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.
Оценка математического диктанта и тестовой работы обучающихся по математике
«5» - 90-100%
«4» - 75-80%
«3» - 60-70%
«2» - 50% и менее.
Контрольно-измерительный материал
Контрольная работа № 1 Вариант 1
1о. Диагонали прямоугольника CDEF пересекаются в точке О. Найдите угол между диагоналями, если СDO = 400.
2о. Найдите боковую сторону равнобедренной трапеции, основания которой равны 12см и 6см, а один из углов равен 600.
3о. На продолжении диагонали АС прямоугольника ABCD отложены равные отрезки АМ и СN. Докажите: а) что треугольники MAD и NCB равны; б) что четырехугольник MBND параллелограмм.
Контрольная работа № 1
Вариант 2
1о. Диагонали ромба ABCD пересекаются в точке О. Найдите углы треугольника АОВ, если между диагоналями, если ВСD = 750.
2о. Найдите меньшую боковую сторону прямоугольной трапеции, основания которой равны 10см и 6см, а один из углов равен 450.
3о. На диагонали NK прямоугольника MNPK отложены равные отрезки NА и KE. Докажите: а) что треугольники ANP и EKM равны; б) что четырехугольник APEM параллелограмм.
Контрольная работа № 2 Вариант 1
1о. Смежные стороны параллелограмма равны 12см и 20см, а один из его углов равен 300. Найдите площадь параллелограмма.
2о. Найдите периметр прямоугольника, если его диагональ равна 15см, а одна из сторон – 9см.
3о. Площадь прямоугольной трапеции равна 120см2, а ее высота равна 8см. Найти все стороны трапеции, если одно из оснований больше другого на 6см.
Контрольная работа № 2 Вариант 2
1о. Высота BD треугольника АВС делит основание АС на отрезки: AD = 8см, DC = 12см, а угол А при основании равен 450. Найдите площадь этого треугольника.
2о. Найдите периметр прямоугольного треугольника, если его катеты равны 12см и 16см.
3о. Найти площадь трапеции CDEF c основаниями CF и DE, если CD = 12см, DE = 14cм, CF = 30см, D = 1500.
Контрольная работа № 3 Вариант 1
1о. Высота CD прямоугольного треугольника АВС делит гипотенузу АВ на части AD = 16см и BD = 9см. Докажите, что ∆ ACD ∞ ∆ CBD.
2о. АВ || CD. Найдите АВ, если OD = 15см, OB = 9см, CD = 25см.
Контрольная работа № 3 Вариант 2
1о. Высота CD прямоугольного треугольника АВС отсекает от гипотенузы АВ, равной 9см, отрезок AD = 4см. Докажите, что ∆ AВC ∞ ∆ АCD.
2о. MN || DF. Найдите MN, если DM = 6см, EM = 8см, DF = 21см.
Контрольная работа № 4 Вариант 1
1о. Площадь ромба равна 48см2. Найти площадь четырехугольника, вершинами которого являются середины сторон данного ромба.
2. В равнобедренной трапеции меньшее основание равно 4см, боковая сторона равна 6см, а один из углов равен 1200. Найти площадь трапеции.
3. В прямоугольном треугольнике АВС А = 900, АВ = 20см, высота AD = 12см. Найти АС и cos C.
Контрольная работа № 4 Вариант 2
1о. Площадь прямоугольника равна 36см2. Найти площадь четырехугольника, вершинами которого являются середины сторон данного прямоугольника.
2. В прямоугольной трапеции меньшее основание равно 3см, большая боковая сторона равна 4см, а один из углов равен 1500. Найти площадь трапеции.
3. Высота BD прямоугольного треугольника АВС равна 24см и отсекает от гипотенузы АС отрезок DC, равный 18см. Найти АВ и cos А.
Контрольная работа № 5 Вариант 1
1о. Диагонали ромба АВСD пересекаются в точке О. Докажите, что прямая BD касается окружности с центром А и радиусом, равным ОС.
2о. Центр описанной окружности лежит на высоте равнобедренного треугольника и делит высоту на отрезки, равные 5см и 13см. Найти площадь этого треугольника.
3о. Основание равнобедренного треугольника равно 18см, а боковая сторона равна 15см. Найти радиусы вписанной в треугольник и описанной около треугольника окружностей.
Контрольная работа № 5 Вариант 2
1о. В равнобедренном треугольнике АВС с основанием АС проведена медиана BD. Докажите, что прямая BD касается окружности с центром С и радиусом, равным AD.
2о. Меньший из отрезков, на которые центр описанной около равнобедренного треугольника окружности делит его высоту , равен 8см, а основание треугольника равно 12см. Найти площадь этого треугольника.
3о. Высота, проведенная к основанию равнобедренного треугольника, равно 9см, а само основание равно 24см. Найти радиусы вписанной в треугольник и описанной около треугольника окружностей.
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]