Рабочая программа по математике (5-9 класс)

Автор публикации:

Дата публикации:

Краткое описание: ...



Утверждаю

директор МАОУ СОШ № 4 С.А Ряхов


Рабочая программа

по математике

на 2016-2021 учебный год

для 5-9 класса муниципального автономного общеобразовательного учреждения «Средняя общеобразовательная школа № 4»


Ф.И.О. учителя, — составителя программы, Глухова Ольга Владимировна


Программа составлена на основе

  1. Федерального Государствен­ного образовательного стан­дарта основного общего образова­ния, утверждённого приказом Министерства образова­ния и науки РФ от 17.12. 2010г. №1897;

  2. Учебного плана МАОУ «Средняя общеобразовательная школа №4» г. Златоуста ;

  3. Рабочей программы к линии учебников Г. К. Муравина, К. С. Муравина, О. В. Муравиной. В сборнике рабочих программ «Математика. 5—9 классы» для общеобразователь­ных учреждений / Составитель О. В. Муравина Математика 5—9 классы.






г. Златоуст

2016 г.

Пояснительная записка

Рабочая программа по математике разработана на основе следующих документов:

Программа составлена на основе

  1. Федерального Государствен­ного образовательного стан­дарта основного общего образова­ния, утверждённого приказом Министерства образова­ния и науки РФ от 17.12. 2010г. №1897;

  2. Об особенностях преподавания учебного предмета «Математика» в 2016/2017 году от 17.06.2016г №03-02/5361

  3. Учебного плана МАОУ «Средняя общеобразовательная школа №4» г. Златоуста ;

  4. Рабочая программа к линии учебников Г. К. Муравина, К. С. Муравина, О. В. Муравиной. В сборнике рабочих программ «Математика. 5—9 классы» для общеобразователь­ных учреждений / Составитель О. В. Муравина

  5. Геометрия 7-9 класс. Рабочая программа к линии учебников Л. С. Атанасяна и др. /Составитель В.Ф. Бутузов

В ней также учитываются основ­ные идеи и положения Программы развития и формирования универсальных учеб­ных действий для основного общего образования.

Программа включает следующие разделы: пояснительную записку, общую характеристику учебного предмета, описание места учебного предмета в учебном плане, результаты изуче­ния курса (личностные, межпредметные и предметные), со­держание курса, тематическое планирование с определением основных видов учебной деятельности обучающихся и описа­ние материально-технического обеспечения образовательно­го процесса.

Рабочая программа ориентирована на использование учебно-методического комплекта:

  1. Муравин Г. К., Муравина О. В. Математика. 5класс.

  2. Муравин Г. К., Муравина О. В. Математика. 6класс.

  3. Муравин Г. К., Муравин К. С., Муравина О. В. Алгебра. 7 класс.

  4. Муравин Г. К., Муравин К. С., Муравина О. В. Алгебра.8 класс.

  5. Муравин Г. К., Муравин К. С., Муравина О. В. Алгебра. 9 класс.

  6. Л.С. Атанасян, В. Ф. Бутузов, С. Б. Ка­домцев и др. Геометрия: 7—9 классы



Обучение математике является важнейшей составляю­щей основного общего образования и призвано развивать ло­гическое мышление и математическую интуицию учащихся, обеспечить овладение учащимися умениями в решении раз­личных практических и межпредметных задач. Математика входит в предметную область «Математика и информатика».

Основными целями курса математики 5—9 классов в со­ответствии с Федеральным образовательным стандартом ос­новного общего образования являются: «осознание значения математики ... в повседневной жизни человека; формирова­ние представлений о социальных, культурных и исторических факторах становления математической науки; формирование представлений о математике как части общечеловеческой культуры, универсальном языке науки, позволяющем описы­вать и изучать реальные процессы и явления»

Усвоенные в курсе математики основной школы знания и способы действий необходимы не только для дальнейшего ус­пешного изучения математики и других школьных дисциплин в основной и старшей школе, но и для решения практических задач в повседневной жизни.

При разработке учебников авторы дополнительно стави­ли перед собой следующие цели: развитие личности школьни­ка средствами математики, подготовка его к продолжению обучения и к самореализации в современном обществе.

Достижение перечисленных целей предполагает решение следующих задач:

  • формирование мотивации изучения математики, го­товности и способности учащихся к саморазвитию, лич­ностному самоопределению, построению индивидуальной траектории в изучении предмета;

  • формирование у учащихся способности к организации своей учебной деятельности посредством освоения личност­ных, познавательных, регулятивных и коммуникативных уни­версальных учебных действий;

  • формирование специфических для математики стилей мышления, необходимых для полноценного функционирова­ния в современном обществе, в частности логического, алго­ритмического и эвристического;

  • освоение в ходе изучения математики специфических видов деятельности, таких как построение математических моделей, выполнение инструментальных вычислений, овла­дение символическим языком предмета и др.;

  • формирование умений представлять информацию в за­висимости от поставленных задач в виде таблицы, схемы, гра­фика, диаграммы, использовать компьютерные программы, Интернет при её обработке;

  • овладение учащимися математическим языком и аппа­ратом как средством описания и исследования явлений окру­жающего мира;

  • овладение системой математических знаний, умений и навыков, необходимых для решения задач повседневной жиз­ни, изучения смежных дисциплин и продолжения образова­ния;

  • формирование научного мировоззрения;

  • воспитание отношения к математике как к части обще­человеческой культуры, играющей особую роль в обществен­ном развитии.


Овладение учащимися системой геометрических знаний и умений необходимо в повседневной жизни для изучения смежных дисциплин и продолжения образования.

  • Практическая значимость школьного курса геометрии обу­словлена тем, что её объектом являются пространствен­ные формы и количественные отношения действительного мира. Геометрическая подготовка необходима для понимания принципов устройства и использования современной техники, восприятия научных и технических понятий и идей. Математи­ка является языком науки и техники. С её помощью моде­лируются и изучаются явления и процессы, происходящие в природе.

  • Геометрия является одним из опорных предметов основной школы: она обеспечивает изучение других дисциплин. В пер­вую очередь это относится к предметам естественно-научного цикла, в частности к физике. Развитие логического мышле­ния учащихся при обучении геометрии способствует также усвоению предметов гуманитарного цикла. Практические уме­ния и навыки геометрического характера необходимы для тру­довой деятельности и профессиональной подготовки школь­ников.

  • Развитие у учащихся правильных представлений о сущно­сти и происхождении геометрических абстракций, соотношении реального и идеального, характере отражения математической наукой явлений и процессов реального мира, месте геометрии в системе наук и роли математического моделирования в на­учном познании и в практике способствует формированию на­учного мировоззрения учащихся, а также формированию ка­честв мышления, необходимых для адаптации в современном информационном обществе.

  • Требуя от учащихся умственных и волевых усилий, концен­трации внимания, активности развитого воображения, геомет­рия развивает нравственные черты личности (настойчивость, целеустремлённость, творческую активность, самостоятельность, ответственность, трудолюбие, дисциплину и критичность мыш­ления) и умение аргументированно отстаивать свои взгляды и убеждения, а также способность принимать самостоятельные решения.

  • Геометрия существенно расширяет кругозор учащихся, зна­комя их с индукцией и дедукцией, обобщением и конкретиза­цией, анализом и синтезом, классификацией и систематиза­цией, абстрагированием, аналогией. Активное использование задач на всех этапах учебного процесса развивает творческие способности школьников.

  • При обучении геометрии формируются умения и навыки умственного труда — планирование своей работы, поиск ра­циональных путей её выполнения, критическая оценка резуль­татов. В процессе обучения геометрии школьники должны на­учиться излагать свои мысли ясно и исчерпывающе, лаконично и ёмко, приобрести навыки чёткого, аккуратного и грамотного выполнения математических записей.

  • Важнейшей задачей школьного курса геометрии является развитие логического мышления учащихся. Сами объекты гео­метрических умозаключений и принятые в геометрии пра­вила их конструирования способствуют формированию уме­ний обосновывать и доказывать суждения, приводить чёткие определения, развивают логическую интуицию, кратко и на­глядно вскрывают механизм логических построений и учат их применению. Тем самым геометрия занимает ведущее место в формировании научно-теоретического мышления школь­ников.

  • Раскрывая внутреннюю гармонию математики, формируя понимание красоты и изящества математических рассуждений, способствуя восприятию геометрических форм, усвоению по­нятия симметрии, геометрия вносит значительный вклад в эсте­тическое воспитание учащихся. Её изучение развивает во­ображение школьников, существенно обогащает и развивает их пространственные представления.


Содержание курса математики строится на основе сис­темно-деятельностного подхода, принципов разделения труд­ностей, укрупнения дидактических единиц, опережающего формирования ориентировочной основы действий, принци­пов позитивной педагогики.

Системно-деятельностный подход предполагает ориен­тацию на достижение цели и основного результата образова­ния — развитие личности обучающегося на основе освоения универсальных учебных действий, познания и освоения мира, активной учебно-познавательной деятельности, фор­мирование его готовности к саморазвитию и непрерывному образованию; разнообразие индивидуальных образователь­ных траекторий и индивидуального развития каждого обуча­ющегося.

Принцип разделения трудностей. Математическая де­ятельность, которой должен овладеть школьник, является комплексной, состоящей из многих компонентов. Именно эта многокомпонентность является основной причиной ис­пытываемых школьниками трудностей. Концентрация вни­мания на обучении отдельным компонентам делает материал доступнее.

Для осуществления принципа необходимо правильно и последовательно выбирать компоненты для обучения. Если некоторая математическая деятельность содержит в себе творческую и техническую компоненту, то, согласно принци­пу разделения трудностей, они изучаются отдельно, а затем интегрируются.

Например, в 7 классе решение текстовых задач разбито на отдельные пункты. Сначала ученики учатся составлять урав­нения к текстовым задачам, а затем — решать уравнения и до­водить решения текстовых задач до ответа.

Когда изучаемый материал носит алгоритмический харак­тер, для отработки и осознания каждого шага алгоритма в учебнике составляется система творческих заданий. Каждое следующее задание в системе опирается на результат преды­дущего, применяется сформированное умение, новое знание. Так постепенно формируется весь алгоритм действия.

Принцип укрупнения дидактических единиц. Укруп­нённая дидактическая единица (УДЕ) — это клеточка учебно­го процесса, состоящая из логически различных элементов, обладающих в то же время информационной общностью. Она обладает качествами системности и целостности, устойчиво­стью во времени и быстрым проявлением в памяти. Принцип УДЕ предполагает совместное изучение взаимосвязанных действий, операций, теорем. Принцип укрупнения дидакти­ческих единиц весьма эффективен, например, при изучении формул сокращённого умножения, формул комбинаторики, прогрессий.

Принцип опережающего формирования ориентиро­вочной основы действия (ООД) заключается в формирова­нии у обучающегося представления о цели, плане и средствах осуществления некоторого действия. Полная ООД обеспечи­вает систематически безошибочное выполнение действия в некотором диапазоне ситуаций. ООД составляется учениками совместно с учителем в ходе выполнения системы заданий. Отдельные этапы ООД включаются в опережающую систему упражнений, что даёт возможность подготовить базу для изу­чения нового материала и увеличивает время на его усвоение.

Принципы позитивной педагогики заложены в основу педагогики сопровождения, поддержки и сотрудничества учи­теля с учеником. Создавая интеллектуальную атмосферу гу­манистического образования, учителя формируют у обучаю­щихся критичность, здравый смысл и рациональность. В про­цессе обучения учитель воспитывает уважением, свободой, ответственностью и участием. В общении с учителем и то­варищами по обучению передаются, усваиваются и выра­батываются приёмы жизненного роста как цепь процедур са­моидентификации, самоопределения, самоактуализации и самореализации, в результате которых формируется творчески-позитивное отношение к себе, к социуму и к окру­жающему миру в целом, вырабатывается жизнестойкость, расширяются возможности и перспективы здоровой жизни, полной радости и творчества.

[link]