Рабочая программа по алгебре для 8 класса

Автор публикации:

Дата публикации:

Краткое описание: ...


МБОУ « ЗОЛОТОПОЛЕНСКАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА» КИРОВСКОГО РАЙОНА РЕСПУБЛИКИ КРЫМ



Рабочая программа

по алгебре для 8-Б класса

уровень базовый


Учитель: Антипова Галина Ивановна

Высшая квалификационная категория


Срок реализации программы 2016- 2017 учебный год

Количество часов по учебному плану в год___105_________; в неделю__3

Учебник: Алгебра для 8 класса общеобразовательных учреждений / [Ю.Н.Макарычев, Н.Г.Миндюк, К.И.Нешков, С.Б.Суворова]; под редакцией С.А.Теляковского – М.: Просвещение, 2014г;

Рабочую программу составила Антипова Г.И.

Золотое Поле 2016 год

Пояснительная записка

        Настоящая программа по алгебре для основной общеобразовательной школы 8  класса составлена на основе федерального компонента государственного стандарта основного  общего образования (приказ МОиН РФ от 05.03.2004г. № 1089), примерных программ по математике  (письмо Департамента государственной политики в образовании Минобрнауки России от 07.07.2005г. № 03-1263),  «Временных требований к минимуму содержания основного общего образования» (приказ МО РФ от 19.05.98. № 1236), примерной программы общеобразовательных учреждений по алгебре 7–9 классы,  к учебному комплексу для 7-9 классов (авторы Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова Ю.Н., составитель Т.А. Бурмистрова – М: «Просвещение», 2014.)

                

        Примерная программа конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса.

Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и дает распределение учебных часов по разделам курса. Содержание программы направлено на освоение учащимися знаний, умений и навыков на базовом уровне, что соответствует Образовательной программе школы. Она включает все темы, предусмотренные федеральным компонентом государственного образовательного стандарта основного общего образования по математике. Учебный процесс ориентирован на: рациональное сочетание устных и письменных видов работы как при изучении теории, так и при решении задач; сбалансированное сочетание традиционных и новых методов обучения; оптимизированное применение объяснительно-иллюстративных и эвристических методов; использование современных технических средств обучения.

Преобладающей формой текущего контроля выступает письменный (тесты, самостоятельные и контрольные работы) и устный опрос.

В курсе алгебры 8 класса вырабатывается умение выполнять тождественные преобразования рациональных выражений; систематизируются сведения о рациональных числах и даётся представление об иррациональных числах, расширяется тем самым понятие о числе; вырабатывается умение выполнять преобразования выражений, содержащих квадратные корни; вырабатываются умения решать квадратные уравнения и простейшие рациональные уравнения и применять их к решению задач; знакомятся учащиеся с применением неравенств для оценки значений выражений, вырабатывается умение решать линейные неравенства с одной переменной и их системы; вырабатывается умение применять свойства степени с целым показателем в вычислениях и преобразованиях формируются начальные представления о сборе и группировке статистических данных, их наглядной интерпретации.

Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах.

При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.

.

Цели программы обучения: развитие вычислительных и формально-оперативных алгебраических умений учащихся до уровня, позволяющего уверенно использовать при решении задач математики и смежных предметов (физики, химии и др.); усвоение аппарата

уравнений и неравенств как основного средства математического моделирования прикладных задач; осуществление функциональной подготовки школьников.

Изучение математики на ступени основного общего образования направлено на достижение следующих целей:

 овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

 интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

 формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

 воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.        

Количество учебных часов:

В год -105 часов (3 часа в неделю, всего 105 часов)

В том числе: Контрольных работ – 10 (включая итоговую контрольную работу)

Формы промежуточной и итоговой аттестации: Промежуточная аттестация проводится в форме тестов, контрольных, самостоятельных работа.

.

Требования к уровню подготовки учащихся

В результате изучения алгебры ученик должен

  • знать/понимать

  • существо понятия математического доказательства; примеры доказательств;

  • существо понятия алгоритма; примеры алгоритмов;

  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

  • уметь

  • выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;

  • применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;

  • решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним;

  • решать линейные неравенства с одной переменной и их системы;

  • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

  • определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

  • описывать свойства изученных функций, строить их графики;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;

  • моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;

  • описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

  • интерпретации графиков реальных зависимостей между величинами.

Задачи:

● систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры; формирование и расширение алгебраического аппарата;

● формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности;

● получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов;

● формирование у школьников представлений о роли математики в развитии цивилизации и культуры;

● развитие представлений о вероятностно-статистических закономерностях в окружающем мире;

● совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развитие логического мышления.

Цели

Изучение алгебры в 8 классе направлено на достижение следующих целей:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • развитие вычислительных и формально-оперативных алгебраических умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления,

  • элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

Основные развивающие и воспитательные цели

 Развитие:

  • Ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

  • Математической речи;

  • Сенсорной сферы; двигательной моторики;

  • Внимания; памяти;

  • Навыков само и взаимопроверки.

Формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов.

 

Воспитание:

  • Культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;

  • Волевых качеств;

  • Коммуникабельности;

  • Ответственности.

ФОРМЫ ОРГАНИЗАЦИИ УЧЕБНОГО ПРОЦЕССА

При организации учебного процесса будет обеспечена последовательность изучения учебного материала: новые знания опираются на недавно пройденный материал; обеспечено поэтапное раскрытие тем с последующей реализацией; закрепление в процессе практикумов, тренингов и итоговых собеседований; будут использоваться уроки-соревнования, уроки консультации, зачеты.

Формы организации учебного процесса:

  • индивидуальные;

  • групповые;

  • индивидуально-групповые;

  • фронтальные;

  • практикумы

Формы контроля.


         Основными видами классных и домашних письменных работ обучающихся являются обучающие работы.

По алгебре в 8 классе проводятся текущие и одна итоговая письменные контрольные работы, самостоятельные работы, контроль знаний в форме теста, диагностические работы

Текущие контрольные работы имеют целью проверку усвоения изучаемого и проверяемого программного материала. На контрольные работы отводится 1 час. Итоговая контрольная работа проводится в конце учебного года.

Самостоятельные работы и тестирование рассчитаны на часть урока (15-25 мин), в зависимости от цели проведения контроля.


Общеучебные умения, навыки и способы деятельности

В ходе изучения алгебры обучающиеся приобретают опыт:

• планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

• решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;

• исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

• ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации,

интерпретации, аргументации и доказательства;

• проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;

• поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.


Регулятивные:

– самостоятельно обнаруживать и формулировать проблему в классной и индивидуальной учебной деятельности;

выдвигать версии решения проблемы, осознавать конечный результат, выбирать средства достижения цели из предложенных или их искать самостоятельно;

составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);

– работая по предложенному или самостоятельно составленному плану, использовать наряду с основными и дополнительные средства (справочная литература, сложные приборы, компьютер);

планировать свою индивидуальную образовательную траекторию;

– свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся критериев, различая результат и способы действий;

– в ходе представления проекта давать оценку его результатам;

– самостоятельно осознавать причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха;

уметь оценить степень успешности своей индивидуальной образовательной деятельности;

Средством формирования регулятивных УУД служат технология системно- деятельностного подхода на этапе изучения нового материала и технология оценивания образовательных достижений (учебных успехов).


Познавательные:

анализировать, сравнивать, классифицировать и обобщать факты и явления;

осуществлять сравнение, сериацию и классификацию, самостоятельно выбирая основания и критерии для указанных логических операций; строить классификацию путём дихотомического деления (на основе отрицания);

строить логически обоснованное рассуждение, включающее установление причинно-следственных связей;

создавать математические модели;

– составлять тезисы, различные виды планов (простых, сложных и т.п.). Преобразовывать информацию из одного вида в другой (таблицу в текст, диаграмму и пр.);

вычитывать все уровни текстовой информации.

уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность.

понимая позицию другого человека, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории. Для этого самостоятельно использовать различные виды чтения (изучающее, просмотровое, ознакомительное, поисковое), приёмы слушания.

уметь использовать компьютерные и коммуникационные технологии как инструмент для достижения своих целей. Уметь выбирать адекватные задаче инструментальные программно-аппаратные средства и сервисы.

Средством формирования познавательных УУД служат учебный материал и прежде всего продуктивные задания учебника.

– Использование математических знаний для решения различных математических задач и оценки полученных результатов.

– Совокупность умений по использованию доказательной математической речи.

– Совокупность умений по работе с информацией, в том числе и с различными математическими текстами.

Умения использовать математические средства для изучения и описания реальных процессов и явлений.

Независимость и критичность мышления.

Воля и настойчивость в достижении цели.

Коммуникативные:

– самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);

– отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами;

– в дискуссии уметь выдвинуть контраргументы;

– учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;

– понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;

Средством формирования коммуникативных УУД служат технология проблемного обучения, организация работы в малых группах, также использование на уроках технологии личностно- ориентированного и системно- деятельностного обучения.

Личностные достижения учащихся

  • использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры

описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

интерпретации графиков реальных зависимостей между величинами.

  • формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учётом устойчивых познавательных интересов

  • формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики

  • формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности

  • умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры

  • критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта

  • креативность мышления, инициативу, находчивость, активность при решении алгебраических задач

  • умение контролировать процесс и результат учебной математической деятельности

  • способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.

Содержание учебного предмета


1.Рациональные дроби

Рациональная дробь. Основное свойство дроби, сокращение дробей. Тождественные преобразования рациональных выражений. Функция у = и её график.

Цель: выработать умение выполнять тождественные преобразования рациональных выражений.

Так как действия с рациональными дробями существенным образом опираются на действия с многочленами, то в начале темы необходимо повторить с обучающимися преобразования целых выражений.

Главное место в данной теме занимают алгоритмы действий с дробями. Учащиеся должны понимать, что сумму, разность, произведение и частное дробей всегда можно представить в виде дроби. Приобретаемые в данной теме умения выполнять сложение, вычитание, умножение и деление дробей являются опорными в преобразованиях дробных выражений. Поэтому им следует уделить особое внимание. Нецелесообразно переходить к комбинированным заданиям на все действия с дробями прежде, чем будут усвоены основные алгоритмы. Задания на все действия с дробями не должны быть излишне громоздкими и трудоемкими.

При нахождении значений дробей даются задания на вычисления с помощью калькулятора. В данной теме расширяются сведения о статистических характеристиках. Вводится понятие среднего гармонического ряда положительных чисел.

Изучение темы завершается рассмотрением свойств графика функции у =.


УУД:

Коммуникативные:

Слушать и слышать друг друга; представлять конкретное содержание и сообщать его в письменной и устной форме.

Регулятивные:

Принимать познавательную цель, сохранять её при выполнении учебных действий, регулировать весь процесс их выполнения и чётко выполнять требования познавательной задачи.

Познавательные:

Выводить следствия из имеющихся в условии задачи данных; устанавливать причинно-следственные связи.


2.Квадратные корни

Понятие об иррациональных числах. Общие сведения о действительных числах. Квадратный корень. Понятие о нахождении приближенного значения квадратного корня. Свойства квадратных корней. Преобразования выражений, содержащих квадратные корни. Функция у = , её свойства и график.

Цель:

систематизировать сведения о рациональных числах и дать представление об иррациональных числах, расширив тем самым понятие о числе; выработать умение выполнять преобразования выражений, содержащих квадратные корни.

В данной теме учащиеся получают начальное представление о понятии действительного числа. С этой целью обобщаются известные обучающимся сведения о рациональных числах. Для введения понятия иррационального числа используется интуитивное представление о том, что каждый отрезок имеет длину и потому каждой точке координатной прямой соответствует некоторое число. Показывается, что существуют точки, не имеющие рациональных абсцисс.

При введении понятия корня полезно ознакомить обучающихся с нахождением корней с помощью калькулятора.

Основное внимание уделяется понятию арифметического квадратного корня и свойствам арифметических квадратных корней. Доказываются теоремы о корне из произведения и дроби, а также тождество =, которые получают применение в преобразованиях выражений, содержащих квадратные корни. Специальное внимание уделяется освобождению от иррациональности в знаменателе дроби в выражениях вида , . Умение преобразовывать выражения, содержащие корни, часто используется как в самом курсе алгебры, так и в курсах геометрии, алгебры и начал анализа.

Продолжается работа по развитию функциональных представлений обучающихся. Рассматриваются функция у=, её свойства и график. При изучении функции у=, показывается ее взаимосвязь с функцией у = х2, где х ≥ 0.

УУД:

Коммуникативные:

Слушать и слышать друг друга; представлять конкретное содержание и сообщать его в письменной и устной форме.

Регулятивные:

Принимать познавательную цель, сохранять её при выполнении учебных действий, регулировать весь процесс их выполнения и чётко выполнять требования познавательной задачи.

Познавательные:

Выводить следствия из имеющихся в условии задачи данных; устанавливать причинно-следственные связи.

3.Квадратные уравнения

Квадратное уравнение. Формула корней квадратного уравнения. Решение рациональных уравнений. Решение задач, приводящих к квадратным уравнениям и простейшим рациональным уравнениям.

Цель:

выработать умения решать квадратные уравнения и простейшие рациональные уравнения и применять их к решению задач.

В начале темы приводятся примеры решения неполных квадратных уравнений. Этот материал систематизируется. Рассматриваются алгоритмы решения неполных квадратных уравнений различного вида.

Основное внимание следует уделить решению уравнений вида ах2 + bх + с = 0, где а 0, с использованием формулы корней. В данной теме учащиеся знакомятся с формулами Виета, выражающими связь между корнями квадратного уравнения и его коэффициентами. Они используются в дальнейшем при доказательстве теоремы о разложении квадратного трехчлена на линейные множители.

Учащиеся овладевают способом решения дробных рациональных уравнений, который состоит в том, что решение таких уравнений сводится к решению соответствующих целых уравнений с последующим исключением посторонних корней.

Изучение данной темы позволяет существенно расширить аппарат уравнений, используемых для решения текстовых задач.

УУД:

Коммуникативные:

Представлять конкретное содержание и сообщать его в письменной и устной форме;

Уметь (или развивать способность) с помощью вопросов добывать недостающую информацию.

Регулятивные:

Ставить учебную задачу на основе соотнесения того, что уже известно, усвоено, и того, что ещё неизвестно; самостоятельно формулировать познавательную цель и строить действия в соответствии с ней.

Познавательные:

Проводить анализ способов решения задач

4. Неравенства

Числовые неравенства и их свойства. Почленное сложение и умножение числовых неравенств. Погрешность и точность приближения. Линейные неравенства с одной переменной и их системы.

Цель:

ознакомить обучающихся с применением неравенств для оценки значений выражений, выработать умение решать линейные неравенства с одной переменной и их системы.

Свойства числовых неравенств составляют ту базу, на которой основано решение линейных неравенств с одной переменной. Теоремы о почленном сложении и умножении неравенств находят применение при выполнении простейших упражнений на оценку выражений по методу границ. Вводятся понятия абсолютной Погрешности и точности приближения, относительной погрешности.

Умения проводить дедуктивные рассуждения получают развитие как при доказательствах указанных теорем, так и при выполнении упражнений на доказательства неравенств.

В связи с решением линейных неравенств с одной переменной дается понятие о числовых промежутках, вводятся соответствующие названия и обозначения. Рассмотрению систем неравенств с одной переменной предшествует ознакомление обучающихся с понятиями пересечения и объединения множеств.

При решении неравенств используются свойства равносильных неравенств, которые разъясняются на конкретных примерах. Особое внимание следует уделить отработке умения решать простейшие неравенства вида ах > b, ах < b, остановившись специально на случае, когда а<0.

В этой теме рассматривается также решение систем двух линейных неравенств с одной переменной, в частности таких, которые записаны в виде двойных неравенств.



УУД

Коммуникативные:

Обмениваться мнениями, понимать позицию партнёра, в том числе и отличную от своей; задавать вопросы, слушать и отвечать на вопросы других, формулировать собственные мысли, высказывать и обосновывать свою точку зрения.

Регулятивные:

Планировать (в сотрудничестве с учителем и одноклассниками или самостоятельно) необходимые действия, операции, действовать по плану; самостоятельно планировать необходимые действия, операции.

Познавательные:

Анализировать условия и требования задачи; проводить анализ способов решения задачи с точки зрения их рационализации и экономичности.

5.Степень с целым показателем. Элементы статистики

Степень с целым показателем и ее свойства. Стандартный вид числа. Начальные сведения об организации статистических исследований. Сбор и группировка статистических данных. Наглядное представление статистической информации. Круговые диаграммы, полигон, гистограмма.

Цель: выработать умение применять свойства степени с целым показателем в вычислениях и преобразованиях, сформировать начальные представления о сборе и группировке статистических данных, их наглядной интерпретации.

В этой теме формулируются свойства степени с целым показателем. Метод доказательства этих свойств показывается на примере умножения степеней с одинаковыми основаниями. Дается понятие о записи числа в стандартном виде. Приводятся примеры использования такой записи в физике, технике и других областях знаний.

Учащиеся получают начальные представления об организации статистических исследований. Они знакомятся с понятиями генеральной и выборочной совокупности. Приводятся примеры представления статистических данных в виде таблиц частот и относительных частот. Обучающимся предлагаются задания на нахождение по таблице частот таких статистических характеристик, как среднее арифметическое, мода, размах. Рассматривается вопрос о наглядной интерпретации статистической информации. Известные обучающимся способы наглядного представления статистических данных с помощью столбчатых и круговых диаграмм расширяются за счет введения таких понятий, как полигон и гистограмма.

УУД

Коммуникативные:

Устанавливать рабочие отношения; эффективно сотрудничать и способствовать продуктивной кооперации.

Регулятивные:

Составлять план и последовательность действий; вносить коррективы и дополнения в составленные планы.

Познавательные:

Выбирать наиболее эффективные способы решения задачи в зависимости от конкретных условий; проводить анализ способов решения задач; восстанавливать предметную ситуацию, описанную в задаче, путём переформулирования, изображать на схеме только существенную информацию; анализировать объект, выделяя существенные и несущественные признаки.

6. Повторение

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс алгебры 8 класса.



УУД

Аргументировать свою точку зрения, спорить и отстаивать свою позицию невраждебным для оппонентов образом; развивать умения интегрироваться в группу сверстников и строить продуктивное взаимодействие со сверстниками и взрослыми.

Регулятивные:

Вносить необходимые дополнения и коррективы в план и способ действия в случае расхождения эталона, реального действия и его результата.

Познавательные:

Осуществлять сравнение и классификацию по заданным критериям.

Структура курса

Календарно-тематическое планирование





Аргументировать свою точку зрения, спорить и отстаивать свою позицию невраждебным для оппонентов образом; развивать умения интегрироваться в группу сверстников и строить продуктивное взаимодействие со сверстниками и взрослыми.



умение контролировать процесс и результат учебной математической деятельности;

способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений




2.

Повторение материала 7 класса. Диагностическая

контрольная

работа.



Глава 1. Рациональные дроби 23ч.

3

Рациональные выражения.

Выработать умение выполнять тождественные преобразования рациональных выражений.











Выработать умение выполнять тождественные преобразования рациональных выражений.


основное свойство дроби;


правила сложения и вычитания дробей с одинаковыми и разными знаменателями;


правила умножения и деления дробей;


свойства обратной пропорциональности.









Уметь:

находить допустимые значения переменной;


сокращать дроби после разложения на множители числителя и знаменателя;


выполнять действия с алгебраическими дробями;

упрощать выражения с алгебраическими дробями;


осуществлять в рациональных выражениях числовые подстановки и выполнять соответствующие вычисления;

выполнять преобразование рациональных выражений,

правильно употреблять функциональную терминологию (значение функции, аргумент, график функции);


строить график обратной пропорциональности, находить значения функции y=k/x по графику, по формуле.


Слушать и слышать друг друга; представлять конкретное содержание и сообщать его в письменной и устной форме.

Принимать познавательную цель, сохранять её при выполнении учебных действий, регулировать весь процесс их выполнения и чётко выполнять требования познавательной задачи.

Выводить следствия из имеющихся в условии задачи данных; устанавливать причинно-следственные связи.


Использовать: приобретенные знания и умения в практической деятельности и повседневной жизни для:

выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами;

интерпретации графиков реальных зависимостей между величинами.

формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учётом устойчивых познавательных интересов





4

Рациональные выражения.



5

Основное свойство дроби.



6

Сокращение дробей.



7

Применение основного свойства дроби.



8

Сложение и вычитание дробей с одинаковыми знаменателями.



9

Сложение и вычитание дробей с одинаковыми знаменателями.



10

Сложение и вычитание дробей с разными знаменателями.




11

Сложение и вычитание дробей с разными знаменателями.



12

Преобразование рациональных выражений.



13

Подготовка к контрольной работе.





14

Контрольная работа №1 по теме «Сложение и вычитание дробей».




15

Работа над ошибками.

Умножение дробей.


Выработать умение выполнять тождественные преобразования рациональных выражений.




16

Возведение дроби в степень.



17

Деление дробей.



18

Деление дробей.



19

Преобразование рациональных выражений.



20

Действия с алгебраическими дробями.



21

Действия с алгебраическими дробями.



22

Функция у = к/х и ее график.



23

Свойства функции у = к/х.



24

Подготовка к контрольной работе.



25

Контрольная работа №2 по теме «Преобразование рациональных выражений. Функция у = к/х».




умение контролировать процесс и результат учебной математической деятельности





Глава 2. Квадратные корни 19ч.

26

Работа над ошибками.

Рациональные числа.

Систематизи-

ровать сведения о рациональных числах дать представление об иррациональных числах, расширив тем самым понятие о числе; выработать умение выполнять преобразования выражений, содержащих квадратные корни.


определения квадратного корня,


арифметического квадратного корня;


какие числа называются рациональными, иррациональными, как обозначается множество рациональных чисел;


свойства арифметического квадратного корня.


Уметь:

применять свойства арифметического квадратного корня к преобразованию выражений;


вычислять значения выражений, содержащих квадратные корни;

решать уравнение ;


находить квадратный корень из произведения, дроби, степени,

выносить множитель из-под знака корня, вносить множитель под знак корня;


строить график функции и находить значения этой функции по графику и по формуле.


Слушать и слышать друг друга; представлять конкретное содержание и сообщать его в письменной и устной форме.


Принимать познавательную цель, сохранять её при выполнении учебных действий, регулировать весь процесс их выполнения и чётко выполнять требования познавательной задачи.


Выводить следствия из имеющихся в условии задачи данных; устанавливать причинно-следственные связи.


Использовать: приобретенные знания и умения в практической деятельности и повседневной жизни для:


выполнения расчетов по формулам,


составления формул, выражающих зависимости между реальными величинами.


формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учётом устойчивых познавательных интересов







27

Иррациональные числа.



28

Квадратные корни.



29

Арифметический квадратный корень.



30

Уравнение .



31

Нахождение приближенных значений квадратного корня.



32

Функция и ее график.



33

Квадратный корень из произведения и дроби.



34

Квадратный корень из степени.



35

Подготовка к контрольной работе.



36

Контрольная работа № 3 по теме «Свойства арифметического квадратного корня»




37

Работа над ошибками.

Вынесение множителя из-под знака корня.

Выработать

умение выполнять преобразования выражений, содержащих квадратные корни.




38

Внесение множителя под знак корня.



39

Освобождение от иррациональности в знаменателе.



40

Преобразование выражений, содержащих квадратные корни.



41

Преобразование выражений, содержащих квадратные корни.



42

Упрощение иррациональных выражений.



43

Подготовка к контрольной работе.



44

Контрольная работа № 4 по теме «Преобразование выражений, содержащих квадратные корни».




умение контролировать процесс и результат учебной математической деятельности





Глава 3. Квадратные уравнения 21ч.

45

Работа над ошибками

Определение квадратного уравнения.


Выработать умения решать квадратные уравнения и применять их к решению задач.


что такое квадратное уравнение,


неполное квадратное уравнение,


приведенное квадратное уравнение;


способы решения неполных квадратных уравнений;


формулы дискриминанта и корней квадратного уравнения,


терему Виета и обратную ей.


Уметь:

решать квадратные уравнения выделением квадрата двучлена,


решать квадратные уравнения по формуле,

решать неполные квадратные уравнения,

исследовать квадратное уравнение по дискриминанту и коэффициентам;


решать уравнения, сводящиеся к квадратным;


решать дробно-рациональные уравнения;


решать уравнения графическим способом


решать квадратные уравнения с помощью теоремы, обратной теореме Виета,


использовать теорему Виета для нахождения коэффициентов и свободного члена квадратного уравнения;


Представлять конкретное содержание и сообщать его в письменной и устной форме;

Уметь (или развивать способность) с помощью вопросов добывать недостающую информацию.

Ставить учебную задачу на основе соотнесения того, что уже известно, усвоено, и того, что ещё неизвестно; самостоятельно формулировать познавательную цель и строить действия в соответствии с ней.

Проводить анализ способов решения задач



формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности

умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры

формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности

умение контролировать процесс и результат учебной математической деятельности

формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учётом устойчивых познавательных интересов




46

Неполные квадратные уравнения.



47

Решение квадратных уравнений выделением квадрата двучлена.



48

Решение квадратных уравнений



49

Решение квадратных уравнений



50

Решение квадратных уравнений



51

Решение задач с помощью квадратных уравнений.



52

Решение задач с помощью квадратных уравнений.



53

Теорема Виета.



54

Подготовка к контрольной работе.



55

Контрольная работа №5 по теме «Решение квадратных уравнений»




56

Работа над ошиб.

Решение дробно-рациональных уравнений.

Выработать умения решать простейшие рациональные уравнения и применять их к решению задач.




57

Решение дробно-рациональных уравнений.




58

Решение дробно-рациональных уравнений.



59

Решение задач с помощью дробно-рациональных уравнений.



60

Решение задач на движение.



61

Решение задач на работу.



62









Решение задач на сплавы и смеси.



63

Решение задач.







64

Подготовка к контрольной работе.








65

Контрольная работа № 6 по теме «Решение дробно-рациональных уравнений»




умение контролировать процесс и результат учебной математической деятельности




Глава 4. Неравенства 20ч.

66

Работа над ошибками.

Неравенства.

Ознакомить обучающихся с применением неравенств для оценки значений выражений.

Выработать умение решать линейные неравенства с одной переменной и их системы.



определение числового неравенства,


свойства числовых неравенств;


понятие решения неравенства с одной переменной,


что значит решить систему неравенств.



Уметь:


записывать и читать числовые промежутки,


находить пересечение и объединение множеств;


иллюстрировать на координатной прямой числовые неравенства;


применять свойства числовых неравенств к решению задач;


решать линейные неравенства;


решать системы неравенств с одной переменной.


Обмениваться мнениями, понимать позицию партнёра, в том числе и отличную от своей; задавать вопросы, слушать и отвечать на вопросы других, формулировать собственные мысли, высказывать и обосновывать свою точку зрения.

Планировать (в сотрудничестве с учителем и одноклассниками или самостоятельно) необходимые действия, операции, действовать по плану; самостоятельно планировать необходимые действия, операции.

Анализировать условия и требования задачи; проводить анализ способов решения задачи с точки зрения их рационализации и экономичности.



Использовать: приобретенные знания и умения в практической деятельности и повседневной жизни для:


моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры

описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;


интерпретации графиков реальных зависимостей между величинами.



формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учётом устойчивых познавательных интересов




67

Числовые неравенства.




68

Свойства числовых неравенств.



69

Применение свойств числовых неравенств.



70

Сложение числовых неравенств.



71

Умножение числовых неравенств.



72

Погрешность и точность приближения



73


Подготовка к контрольной работе.



74

Контрольная работа №7 по теме «Свойства числовых неравенств»





75

Работа над ошибками.

Пересечение и объединение множеств

Выработать умение решать линейные неравенства с одной переменной и их системы.




76

Числовые промежутки.



77

Геометрическая интерпретация числовых промежутков.



78

Решение неравенств с одной переменной.



79

Свойства равносильных неравенств.



80

Решение неравенств вида при .



81

Решение неравенств вида при



82

Решение систем неравенств с одной переменной.



83

Системы линейных неравенств с одной переменной.



84


Подготовка к контрольной работе.



85

Контрольная работа №8 по теме «Решение неравенств с одной переменной».




умение контролировать процесс и результат учебной математической деятельности





Глава 5. Степень с целым показателем. Элементы статистики 11ч.

86

Работа над ошибками.

Определение степени с целым отрицательным показателем.


Выработать умение применять свойства степени с целым показателем в вычислениях и преобразованиях.


определение степени с целым показателем;


свойства степени с целым показателем;


стандартный вид числа;




Уметь:

применять свойства степени с целым показателем для преобразования выражений и вычислений;


записывать числа в стандартном виде;

выполнять вычисления с числами, записанными в стандартном виде;


представлять информацию в виде таблиц, столбчатых и круговых диаграмм;

строить гистограммы.



Устанавливать рабочие отношения; эффективно сотрудничать и способствовать продуктивной кооперации.

Составлять план и последовательность действий; вносить коррективы и дополнения в составленные планы.

Выбирать наиболее эффективные способы решения задачи в зависимости от конкретных условий; проводить анализ способов решения задач; восстанавливать предметную ситуацию, описанную в задаче, путём переформулирования, изображать на схеме только существенную информацию; анализировать объект, выделяя существенные и несущественные признаки.



Использовать: приобретенные знания и умения в практической деятельности и повседневной жизни.










умение контролировать процесс и результат учебной математической деятельности

креативность мышления, инициативу, находчивость, активность при решении статистических задач




87

Свойства степени с целым показателем.



88

Свойства степени с целым показателем.



89

Стандартный вид числа.



90

Подготовка к контрольной работе.



91

Контрольная работа № 9 по теме «Степень с целым показателем».




92

Работа над ошибками.

Сбор и группировка статистических данных

Сформировать начальные представления о сборе и группировке статистических данных, их наглядной интерпретации.



93

Частота. Таблица частот



94

Наглядные представления статистической информации в виде диаграммы



95

Представления статистической информации в виде столбчатой диаграммы



96

Представления статистической информации в виде круговой диаграммы






Повторение. Решение задач. 9ч.

97

Преобразование рациональных выражений.

Повторение, обобщение и систематизация знаний, умений и навыков за курс алгебры 8 класса.




умение контролировать процесс и результат учебной математической деятельности;

способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности




98

Преобразование выражений, содержащих квадратные корни.






99

Решение квадратных уравнений.






100

Решение задач с помощью квадратных уравнений.







101

Решение задач с помощью дробно-рациональных уравнений.








102

Решение неравенств.







103

Решение систем неравенств.







104

Итоговая контрольная работа.






105

Итоговый урок.







.








Литература:

  1. Алгебра. 8 класс: поурочные планы по учебнику Ю.Н. Макарычева и др. /   авт.-сост. А. Н. Рурукин – Вако2013        

  2.  Учебник для 8 кл. общеобразоват. учреждений / Ю.Н. Макарычев, Н.Г. Миндюк и др.; под ред. С.А. Теляковского. М.: Просвещение, 2010 – 2012 гг.

  3. Дидактические материалы по алгебре 8 класс авт.Л.И.Звавич, Н.В.Дьяконова –изд.Экзамен 2014

  4. Государственный стандарт основного общего образования по математике.

  5. Дидактические материалы по алгебре для 8 класса / В.И. Жохов, Ю.Н. Макарычев, Н.Г. Миндюк. – М.: Просвещение, 2010. – 144 с.

  6. [link]