Пояснительная записка
Рабочая программа составлена в соответствии со следующими нормативно-правовыми и инструктивно-методическими документами:
Федеральный компонент Государственного образовательного стандарта общего образования, утверждённый приказом Министерства образования России от 05.03.2004 г. № 1089 «Об утверждении федерального компонента государственных стандартов начального общего, основного общего и среднего общего образования»;
Приказ Министерства образования и науки РФ от 31.03.2014 года № 253 “Об утверждении федерального перечня учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования”;
Основная образовательная программа основного общего образования Муниципального автономного общеобразовательного учреждения «Средняя общеобразовательная школа №85» (ФК ГОС 2004 г. новая редакция) 01.03.2016 Приказ № 241.
Примерная программа конкретизирует содержание предметных тем образовательного стандарта и дает примерное распределение учебных часов по разделам курса.
Примерная программа выполняет две основные функции.
Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета.
Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации учащихся.
Изучение математики направлено на достижение следующих целей:
овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.
В ходе освоения содержания ставятся следующие задачи:
Создать условия для развития представления о числе и роли вычислений в человеческой практике; формировать практические навыки выполнения устных, письменных, инструментальных вычислений, развивать вычислительную культуру;
Создать условия для овладения символическим языком алгебры, вырабатывать формально-оперативные алгебраические умения и учиться применять их к решению математических и нематематических задач;
Создать условия для изучения свойства и графики элементарных функций, учиться использовать функционально-графические представления для описания и анализа реальных зависимостей;
Создать условия для развития осваивать основные факты и методы планиметрии;
Создать условия для развития логического мышления и речь - умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
Создать условия для формирования представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.
Структура документа
Примерная программа включает семь разделов: пояснительную записку; основное содержание с примерным распределением учебных часов по разделам курса; календарно-тематическое планирование; требованияк уровню подготовки выпускников; перечень учебно-методического обеспечения; список литературы; критерии оценивания результатов.
Общая характеристика учебного предмета
Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.
Арифметика призвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами.
Алгебра нацелена на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира. Одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у учащихся представлений о роли математики в развитии цивилизации и культуры.
Геометрия – один из важнейших компонентов математического образования, необходимая для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.
Курс геометрии 8 класса характеризуется рациональным сочетанием логической строгости и геометрической наглядности. Увеличивается теоретическая значимость материала, расширяются внутренние логические связи курса, повышается роль дедукции, степень абстрактности изучаемого материала. Учащиеся овладевают приемами аналитико – синтетической деятельности при доказательстве теорем и решении задач. Систематическое изложения курса позволяет начать работу по формированию представлений учащихся о строении математической теории, обеспечивает развитие логического мышления. Изложение материала характеризуется постоянным обращением к наглядности, использование рисунков и чертежей на всех этапах обучения и развитием геометрической интуиции на этой основе. Целенаправленное обращение к примерам из практики развивает умение учащихся вычленять геометрические факты, формы и отношения в предметах и явлениях действительности, использовать язык геометрии для их описания.
Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах.
При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.
Место предмета в базисном учебном плане
Согласно Федеральному базисному учебному плану для образовательных учреждений Российской Федерации для обязательного изучения математики в 7 классе отводится 175 часов из расчета 5 часов в неделю.
Обучение строится по учебнику: Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. Геометрия. 7 – 9 классы: учебник для общеобразовательных учреждений / 19-е изд. М.: Просвещение, 2013. Макарычев, Ю. Н. Алгебра7: учебник для 7 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Теляковского. - М.: Просвещение, 2013.
Согласно Федеральному базисному учебному плану для образовательных учреждений Российской Федерации для обязательного изучения математики в 8 классе отводится 175 часов из расчета 5 часа в неделю.
Обучение строится по учебникам: Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. Геометрия. 7 – 9 классы: учебник для общеобразовательных учреждений / 19-е изд. М.: Просвещение, 2013. Макарычев, Ю. Н. Алгебра8: учебник для 8 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Теляковского. - М.: Просвещение, 2013.
Согласно Федеральному базисному учебному плану для образовательных учреждений Российской Федерации для обязательного изучения математики в 9 классе отводится 175 часов из расчета 5 часа в неделю.
Обучение строится по учебникам: Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. Геометрия. 7 – 9 классы: учебник для общеобразовательных учреждений / 19-е изд. М.: Просвещение, 2013. Макарычев, Ю. Н. Алгебра9: учебник для 9 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Теляковского. - М.: Просвещение, 2013.
При этом построение курса осуществляется в форме последовательности тематических блоков.
Общеучебные умения, навыки и способы деятельности.
В ходе преподавания математики в основной школе, работы над формированием у учащихся перечисленных в программе знаний и умений, следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:
планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;
решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;
исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;
проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;
поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.
Контроль уровня знаний
Система контролирующих материалов, позволяющих оценить уровень и качество ЗУН обучающихся на входном, текущем и итоговом этапах изучения предмета включает в себя сборники дидактических материалов. Всего за год 16 контрольных работ в 7 классе
Результаты обучения
Результаты обучения представлены в Требованиях к уровню подготовки и задают систему итоговых результатов обучения, которых должны достигать все учащиеся, оканчивающие основную школу, и достижение которых является обязательным условием положительной аттестации ученика за курс основной школы. Эти требования структурированы по трем компонентам: «знать/понимать», «уметь», «использовать приобретенные знания и умения в практической деятельности и повседневной жизни». При этом последние два компонента представлены отдельно по каждому из разделов содержания.
ОБЯЗАТЕЛЬНЫЙ МИНИМУМ СОДЕРЖАНИЯ ОСНОВНЫХ ОБРАЗОВАТЕЛЬНЫХ ПРОГРАММ 7 класс
Арифметика
Натуральные числа. Степень с натуральным показателем.
Рациональные числа. Степень с целым показателем.
Числовые выражения, порядок действий в них, использование скобок.
Основная цель:
Формирование представлений о целостности и непрерывности курса математики 5 и 6 класса, о степени с натуральным показателем, о степени с нулевым показателем.
Обобщить и систематизировать знания учащихся о числовых выражениях; о выполнении действий по арифметическим законам, действия с десятичными и обыкновенными дробями.
Актуализация арифметических навыков учащихся: действий с обыкновенными дробями, десятичными дробями, положительными и отрицательными числами
Формирование умений составления таблицы основных степеней и применение ее при решении заданий.
Требования к математической подготовке
Уровень обязательной подготовки обучающегося
Уметь возводить числа в степень.
Уметь выполнять основные действия со степенями с натуральными показателями.
Уметь осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления.
Уровень возможной подготовки обучающегося
Алгебра
Алгебраические выражения. Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных, входящих в алгебраические выражения. Равенство буквенных выражений. Тождество, доказательство тождеств. Преобразования выражений.
Свойства степеней с целым показателем. Многочлены. Сложение, вычитание, умножение многочленов. Формулы сокращенного умножения: квадрат суммы и квадрат разности, куб суммы и куб разности. Формула разности квадратов, формула суммы кубов и разности кубов. Разложение многочлена на множители. Квадратный трехчлен. Выделение полного квадрата в квадратном трехчлене. Многочлены с одной переменной. Степень многочлена.
Алгебраическая дробь. Сокращение дробей.
Основная цель:
Формирование представлений о целостности и непрерывности курса математики 5 и 6 класса; об одночлене стандартного вида, об арифметических операциях над одночленами, о подобных одночленах; о многочлене, о приведение подобных членов многочлена, о стандартном виде многочлена, о формулах сокращенного умножения; о разложении многочлена на множители, об алгебраической дроби, о тождествах.
Формирование умений представлять одночлен в стандартном виде, выполнять арифметические действия над одночленами.
Обобщить и систематизировать знания учащихся о числовых выражениях, допустимых и недопустимых значениях переменной выражения, о математических утверждениях, о математическом языке; о выполнении действий по арифметическим законам, действия с десятичными и обыкновенными дробями.
Овладение учащимися навыками решения задач, составляя математическую модель реальной ситуации.
Овладение умением применения свойств степени с натуральным показателем при решении задач, выполнять действие умножение и деление степеней с одинаковыми показателями; складывать, вычитать, умножать и делить одночлены, а также возводить одночлен в степень; представлять многочлен в стандартном виде, выполнять арифметические действия над многочленами; складывать, вычитать, умножать и делить многочлены, вывода и применения формул сокращенного умножения; вынесения общего множителя за скобки, группировки слагаемых, преобразовывать выражения, используя формулы сокращенного умножения, выделения полного квадрата.
Овладение навыками решения задач на составление уравнений, предполагающих приведение подобных слагаемых; решения уравнений, предполагающих применение формул сокращенного умножения; решения уравнений, выделением полного квадрата, решение уравнений, применяя формулы сокращенного умножения.
Развитие логического, математического мышления и интуиции, творческих способностей в области математики.
Требования к математической подготовке
Уровень обязательной подготовки обучающегося
Уметь осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления.
Уметь осуществлять подстановку одного выражения в другое.
Уметь выражать из формул одну переменную через остальные.
Уметь выполнять основные действия с одночленами и многочленами.
Уметь находить значение одночлена при указанных значениях переменных.
Знать формулы сокращенного умножения
Уметь выполнять разложение многочленов на множители.
Уметь сокращать алгебраические дроби.
Уровень возможной подготовки обучающегося
Уметь использовать приобретенные знания и умения в практической деятельности и повседневной жизни для выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами.
Уметь применять свойства степеней для упрощения числовых и алгебраических выражений
Уметь выполнять арифметические действия со сложными одночленами.
[link]