Вычислительные компетенции шестиклассников
при изучении темы «Десятичные дроби»
Лыков Виктор Иванович
учитель математики МБОУ СОШ № 38
им. Е.А. Болховитинова
Аннотация. В данной статье рассматриваются вопросы формирования вычислительных навыков учащихся среднего звена с использованием игр, игровых моментов, тестов, математических диктантов
Одна из важнейших задач обучения школьников математике – формирование у них вычислительных навыков, основой которых является осознанное и прочное усвоение приемов устных и письменных вычислений.
Вычислительные навыки необходимы как в практической жизни каждого человека, так и в учении. Ни один пример, ни одну задачу по математике, физике, химии и т. д. нельзя решать, не обладая элементарными способами вычислений.
Но было бы ошибкой решать эту задачу только путем зазубривания таблиц сложения и умножения и использования при выполнении однообразных тренировочных упражнений. Не менее важная задача современной школы – развитие у учащихся в процессе обучения познавательной самостоятельности, творческой активности, потребности в знаниях.
Для развития у учащихся сознательных и прочных вычислительных навыков многие учителя используют различные методические приемы и формы, например, устный счет, игры «Быстрый счетчик», «Математическое домино», «Математический футбол», «Математическое лото».
Именно в 5-6 классах закладываются основы обучения математике наших воспитанников. Не научим детей считать в этот период, в дальнейшем они будут испытывать трудности.
В своей работе учителя придерживаются определенных принципов. Один из них (наиболее важный) можно сформулировать следующим образом: работа в классе на каждом уроке должна выполняться всем классом, а не учителем и группой успевающих учеников. То есть необходимо создать такую ситуацию – ситуацию «успеха», при которой каждый ученик смог бы почувствовать себя полноценным участником учебного процесса. В целях выполнения этой задачи на уроках математики часто используются игры. В качестве иллюстрации приведу пример заданий для такой игры по теме «Десятичные дроби».
« - Сегодня героем нашей игры будет Незнайка. Он будет сравнивать числа, решать примеры, уравнения и задачи. Не все у Незнайки будет получаться. Вам придется ему помочь».
1. Незнайка сравнил числа. Внимательно посмотрите, все ли он сделал правильно. Найдите ошибки и объясните их.
0,5>0,724; 0,0013<0,00127; 55,7<55,700;
7,6421>7,6429; 0,908<0,918; 8,605=8,6005.
2. Незнайка решил несколько примеров на сложение и вычитание десятичных дробей. Найдите ошибки и объясните их.
2,7+3,651+6,351; 0,325+11,76=15,01; 0,17+1+0,18;
2-0,63=1,63; 117,7-10,07=107,77; 0,632-0,124=0,508.
3. Незнайка решил уравнение х+3,75=6,9 тремя способами, но ответы не совпали. Почему? Найдите ошибки и объясните их.
Способ I. х=6,9-3,75, х=3,25.
Способ II. х=6,9+3,75, х=4,44.
Способ III. х=6,9-3,75, х=3,15.
4. Перед вами примеры на умножение десятичных дробей. Найдите ошибки.
0,0027·1000=0,27; 4,5·55=247,5; 0,24·1,2=2,88.
5. Проверьте примеры на деление десятичных дробей. Найдите ошибки и объясните их.
1,7:100=0,17; 0,035:7=0,005; 0,521:0,008=651,25.
6. Незнайке задали следующее задание: найти такое значение х, при котором равенство 9:10=9·х было бы верно. Не долго думая, он записал следующий ответ: х=0,01. Прав ли Незнайка? Если нет, то докажите свою точку зрения.
7. Незнайку попросили, не умножая определить, сколько получится цифр в произведении 0,54·21,4·11,8 справа от запятой. Ответ Незнайки – 3 цифры. Прав ли он?
Но не всегда использование игры полностью целесообразно. Это может быть связано, например, с большим количеством времени, которое требуется на проведение всей игры. В этом случае оправдано использование игровых моментов или занимательных задач, которые имеют непривычную форму или необычны в организации выполнения задания. Игровые моменты несут те же функции, что и игры, но требуют меньше времени на подготовку и проведение.
Игровой момент №1.На столе лежат карточки, на которых написаны следующие числа:
0,25; [pic] ; 0,75; [pic] ; 1,2; [pic] ; 0,5; [pic] ; 0,0011; [pic] ;
0,975; [pic] ; 1,05; [pic] ; 0,8; 0,6; [pic] ; 2,5; 1,02.
Учитель вызывает к доске первого ученика и просит его за некоторое время отобрать карточки, на которых написаны десятичные дроби. Второй ученик раскладывает отобранные карточки в порядке возрастания. Третий ученик отбирает из оставшихся карточек те, на которых написаны дроби, которые можно перевести в десятичные дроби. Четвертый участник находит равные им десятичные дроби.
Игровой момент №2.Учитель просит первого ученика назвать любое число в виде десятичной дроби. Второго ученика учитель просит назвать число, меньше того числа, которое заключено между первыми двумя (такое число, которое больше второго, но меньше первого). Задание повторяется несколько раз.
Игровой момент №3. Даны числа: 0,25; 0,75; 0,5; 0,1; 0,05; 0,2; 0,15; 0,6; 0,4. Используя каждое число только один раз, надо составить три верных равенства.
Еще одна форма работы, которая очень нравится ученикам, - это тесты «Проверь себя сам». Цель использования данных тестов: развитие критичности мышления, самоконтроля, внимания. При составлении тестов используется картотека типичных ошибок. Приводим пример теста по теме «Действия с десятичными дробями» (сложение и вычитание).
1. Выполните сложение: 0,17+1
а. 1,17 б. 0,18 в. 0,27
2. Укажите, в каком случае сложение десятичных дробей выполнено правильно:
0 [pic] [pic] ,325+11,76
[pic]
а. б. в.
3. Выполните вычитание: 2-0,63
а. 0,61 б. 1,37 в. 1,63
4. Найдите неизвестное число, для которого верно равенство х+3,75=6,9
а. 3,15 б. 10,65 в. 3,25
5.Найдите неизвестное число, для которого верно равенство17,96-у=5,34
а. 12,62 б. 35,44 в. 23,30
6. Найдите неизвестное число, для которого верно равенство 0,1+0,01+х+0,001=1
а. 0,999 б. 0,899 в. 0,889
7. Вычислите: 11,08+0,62-10,09+0,71
а. 2,32 б. 0,9 в. 1,32
8. Собственная скорость лодки равна 3,65 км/ч. Найдите скорость лодки против течения, если скорость течения реки равна 0,8 км/ч.
а. 4,45 км/ч б. 2,85 км/ч в. 3,57 км/ч
9. Скорость катера против течения равна 36,75 км/ч. Найдите скорость лодки по течению, если скорость течения реки равна 5,6 км/ч.
а. 42,35 км/ч б. 47,95 км/ч в. 31,15 км/ч
10. В первый день бригада собрала 4,5 тонн картофеля, во второй день на 0,8 тонн меньше, а в третий день на 2,25 тонн больше, чем во второй. Сколько тонн картофеля собрала бригада за три дня?
а. 14,15 т. б. 9,65 т. в. 10,45 т.
Ответы: 1-а. 2-в. 3-б. 4-а. 5-а. 6-в. 7-а. 8-б. 9-б. 10-а.
Следующим приемом является математический диктант – одна из форм контроля знаний. Первая цель при использовании данного вида работы – проверка уровня готовности учащихся к дальнейшей работе. Каждый учитель знает, как трудно дети воспринимают язык математики на слух. У учащихся 5 – 6 классов основным является наглядно-образное мышление. Слышать и слушать учащихся нужно учить. Следовательно, вторая цель: научить детей слышать и понимать язык математики. Надо отметить, что такую работу нужно проводить систематически.
Для иллюстрации приведем пример математического диктанта по теме «Десятичная запись дробных чисел».
1. Запишите в виде десятичной дроби:
[pic] ; [pic] ; [pic] ; [pic] ; [pic] .
2. Запишите в виде обыкновенной дроби или смешанного числа: 3,5; 18,04; 0,57; 0,005.
3. Запишите десятичную дробь 1,032. Сколько единиц в разряде сотых этой дроби?
4. Запишите десятичную дробь 135,19. Сколько единиц в разряде единиц этой дроби?
При такой форме работы можно использовать метод «закрытой доски»: доска закрыта; сидящие за партами должны выполнить задание самостоятельно; по окончании работы доска открывается, ученики проверяют свою работу и сами оценивают ее.
Таким образом, данная система упражнений по формированию устных вычислительных навыков доказала свою эффективность. Как показала практика, используя различные устные упражнения, дети лучше усваивают тему урока, быстрее считают (причем устно), активнее идут на контакт с учителем, воспринимают материал более осмысленно, занимаются с увлечением. С помощью устных упражнений учителю легче работать с отстающими детьми, осуществлять индивидуальный подход к ребенку, обеспечивать нужное количество повторений на разнообразном материале (в данном случае при изучении темы «Десятичные дроби» в 5-ом классе), постоянно поддерживая сохранять положительное отношение к математическому заданию. Особенно в игровой обстановке ребенок не боится отвечать на вопрос, даже если не знает правильного ответа. Именно поэтому систематическое использование устных упражнений на уроках математики положительно влияет на формирование вычислительных навыков учащихся.
Следовательно, учителю математики необходимо формировать у учащихся вычислительную культуру. А чтобы это сделать, надо сначала сформировать вычислительные навыки. Для достижения их сформированности, учителю необходимо составить систему упражнений и использовать их при выполнении вычислительных операции, желательно на каждом уроке.
Список литературы
1.Абросимова Т. Обобщающие уроки по теме «Действия с десятичными дробями» //Математика в школе.- 2001. - №19.
2. Корзанова К. Урок по теме «Сложение и вычитание десятичных дробей». - 2004.- №17.
3.Мельникова Н. Развитие вычислительной культуры учащихся // Математика в школе.- 2001.- №18.
4.Минаева С. Формирование вычислительных умении в основной школе // Математика в школе.- 2006.- №2.
5. Федотова Л., Повышение вычислительной культуры учащихся // Математика в школе. - 2004. - №35.
6. Филиппов Г. Устный счет – гимнастика ума // Математика. - 2001. - №3. - С. 25-27.
6. Я иду на урок математики. 5 класс: Книга для учителя. М: Издательство «Олимп»; Издательство «Первое сентября». 1999.
7.Мартынов И. И. Устный счет для школьника что гаммы для музыканта // Начальная школа. 2003.- №12.-
8.Я иду на урок математики. 5 класс: Книга для учителя. М: Издательство «Олимп»; Издательство «Первое сентября». 1999.