Рабочая программа по алгебре 7 класс

Автор публикации:

Дата публикации:

Краткое описание: ...


Пояснительная записка.


Рабочая программа основного общего образования по ал­гебре составлена на основе Фундаментального ядра содержа­ния общего образования и Требований к результатам освое­ния основной общеобразовательной программы основного общего образования, представленных в Федеральном государ­ственном образовательном стандарте общего образования. В ней также учитываются основные идеи и положения Про­граммы развития и формирования универсальных учебных действий для основного общего образования.

Сознательное овладение учащимися системой алгебраиче­ских знаний и умений необходимо в повседневной жизни для изучения смежных дисциплин и продолжения образования.

Арифметика, алгебра и геометрия является одним из опорных предметов основной школы: она обеспечивает изучение других дисциплин. В пер­вую очередь это относится к предметам естественнонаучного цикла, в частности к физике. Развитие логического мышле­ния учащихся при обучении математике, алгебре, геометрии способствует усвоению предметов гуманитарного цикла. Практические умения и на­выки арифметического, алгебраического и геометрического характера необходимы для трудовой и профессиональной подготовки школьников.

Развитие у учащихся правильных представлений о сущности и происхождении арифметических, алгебраических и геометрических абстракций, соотношении ре­ального и идеального, характере отражения математической на­укой явлений и процессов реального мира, месте алгебры и геометрии в си­стеме наук и роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения учащихся и качеств мышления, необходимых для адаптации в современном информационном обществе.

Требуя от учащихся умственных и волевых усилий, кон­центрации внимания, активности воображения, математи­ка развивает нравственные черты личности (настойчивость, целеустремленность, творческую активность, самостоятель­ность, ответственность, трудолюбие, дисциплину и критич­ность мышления) и умение аргументировано отстаивать свои взгляды и убеждения, а также способность принимать само­стоятельные решения. Активное использование и решение текстовых задач на всех этапах учебного процесса развивают творческие способности школьников.

Изучение математики позволяет формиро­вать умения и навыки умственного труда: планирование своей работы, поиск рациональных путей её выполнения, критиче­скую оценку результатов. В процессе изучения математики школьники учатся излагать свои мысли ясно и исчерпыва­юще, лаконично и ёмко, приобретают навыки чёткого, акку­ратного и грамотного выполнения математических записей. Важнейшей задачей школьного курса математики являет­ся развитие логического мышления учащихся. Сами объекты математических умозаключений и принятые в математике правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить чёт­кие определения, развивают логическую интуицию, кратко и наглядно раскрывают механизм логических построений и учат их применению. Показывая внутреннюю гармонию матема­тики, формируя понимание красоты и изящества математи­ческих рассуждений, математика вносит значительный вклад в эстетическое воспитание учащихся.

Общая характеристика учебного предмета

В курсе алгебры 7 класса можно выделить следующие основные содержательные линии: арифметика, алгебра, функции.

Содержание линии «Арифметика» служит фундаментом для дальнейшего изучения учащимися математики и смежных дисциплин, способствует развитию не только вычислительных навыков, но и логического мышления, формированию умения пользоваться алгоритмами, способствует развитию умений планировать и осуществлять деятельность, направленную на решение задач, а также приобретению практических навыков, необходимых в повседневной жизни.

Содержание линии «Алгебра» способствует формированию у учащихся математического аппарата для решения задач из разделов математики, смежных предметов и окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей процессов и явлений реального мира.

Развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики, и овладение навыками дедуктивных рассуждений также являются задачами изучения алгебры. Преобразование символьных форм вносит специфический вклад в развитие воображения учащихся, их способностей к математическому творчеству. В основной школе материал группируется вокруг рациональных выражений.

Содержание раздела «Функции» нацелено на получение школьниками конкретных знаний о функции как важнейшей математической модели ля описания и исследования разнообразных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графический), вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.

Задачи:

- овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучении смежных дисциплин;

- интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, интуиции, логического мышления, пространственных представлений, способности к преодолению трудностей;

- формирование представлений об идеях и методах математики как универсального языка науки и техники, средства и моделирования явлений и процессов, устойчивого интереса к предмету;

- воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии;

- выявление и формирование математических и творческих способностей.

Описание места учебного предмета в учебном плане

Согласно федеральному базисному учебному плану для общеобразовательнх учреждений Российской Федерации на изучение математики на ступени основного общего образования отводится не менее 875 часов из расчета 5 часов в неделю с 5 по 9 класс. Рабочая программа для 7 класса рассчитана на 3 часа в неделю по алгебре и 2 часа в неделю по геометрии, общий объем 170 часов.


Структура курса.

Курс имеет следующую структуру:

Раздел «Числа и вычисления» включает в себя работу с различными терминами, связанные с различными видами чисел и способами их записи: целые, дробные, десятичная дробь, положительные и отрицательные числа и т.д. Эта работа предполагает следующих умений: переходить от одной формы записи чисел к другой (например, представлять десятичную дробь в виде обыкновенной); исследовать ситуацию, требующую сравнения чисел, их упорядочения; понимать связь отношений «больше» и «меньше» с расположением точек на координатной прямой; планировать отношение задачи; действовать по заданному и самостоятельно составленному плану решения; составлять и решать пропорции, решать основные задачи на дроби, проценты.

Раздел «Выражения и их преобразования» предусматривает ознакомление с терминами «выражение» и «тождественное преобразование», формирует понятие их в тексте и в речи учителя. Ведется работа по составлению несложных буквенных выражений и формул, осуществляются в выражениях и формулах числовые подстановки и выполнение соответствующих вычислений, начинается формирование умений выражать одну переменную через другую.

В разделе «Уравнения и неравенства» формируется понимание, что уравнение – это математический аппарат решения разнообразных задач из математики, смежных областей знаний, практики. Ведется работа над правильным употребление терминов «уравнение» и «корень уравнения», решением простейших линейных уравнений и решением текстовых задач с помощью составлений уравнений.

В разделе «Функции» формируется понятие, что функция – это математическая модель, позволяющая описывать и изучать разнообразные зависимости между реальными величинами. Ведется работа по интерпретированию в несложных случаях в графиках реальных зависимостей между величинами при помощи ответов на поставленные вопросы.

Личностные, метапредметные и предметные результаты освоения конкретного учебного предмета, курса

Программа позволяет добиваться следующих результатов освоения образовательной программы основного общего образования: личностные:

1) ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;

2) формирования коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, учебно-исследовательской, творческой и других видах деятельности;

3) умения ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

4) первоначального представления о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;

5) критичности мышления, умения распознавать логически некорректные высказывания, отличать гипотезу от факта;

6) креативности мышления, инициативы, находчивости, активности при решении арифметических задач;

7) умения контролировать процесс и результат учебной математической деятельности;

8) формирования способности к эмоциональному восприятию математических объектов, задач, решений, рассуждений; метапредметные:

1) способности самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;

2) умения осуществлять контроль по образцу и вносить необходимые коррективы;

3) способности адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;

4) умения устанавливать причинно-следственные связи; строить логические рассуждения, умозаключения (индуктивные, дедуктивные и по аналогии) и выводы;

5) умения создавать, применять и преобразовывать знаковосимволические средства, модели и схемы для решения учебных и познавательных задач;

6) развития способности организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, взаимодействовать и находить общие способы работы; умения работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;

7) формирования учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);

8) первоначального представления об идеях и о методах математики как об универсальном языке науки и техники;

9) развития способности видеть математическую задачу в других дисциплинах, в окружающей жизни;

10) умения находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

11) умения понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;

12) умения выдвигать гипотезы при решении учебных задач и понимания необходимости их проверки;

13) понимания сущности алгоритмических предписаний и умения действовать в соответствии с предложенным алгоритмом;

14) умения самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

15) способности планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

предметные:

1) умения работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, ис-пользовать различные языки математики (словесный, символический, графический), развития способности обосновывать суждения, проводить классификацию;

2) владения базовым понятийным аппаратом: иметь представление о числе, дроби, процентах, об основных геометрических объектах (точка, прямая, ломаная, угол, многоугольник, многогранник, круг, окружность, шар, сфера и пр.), формирования представлений о статистических закономерностях в реальном мире и различных способах их изучения;

3) умения выполнять арифметические преобразования рациональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;

4) умения пользоваться изученными математическими формулами;

5) знания основных способов представления и анализа статистических данных; умения решать задачи с помощью перебора всех возможных вариантов;

6) умения применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов.



Содержание учебного предмета

1. Выражения, тождества, уравнения

Числовые выражения с переменными. Простейшие преобразования выражений. Уравнение, корень уравнения. Линейное уравнение с одной переменной. Решение текстовых задач методом составления уравнений. Статистические характеристики.

Основная цель - систематизировать и обобщить сведения о преобразованиях алгебраических выражений и решении уравнений с одной переменной.

Первая тема курса 7 класса является связующим звеном между курсом математики 5—6 классов и курсом алгебры. В ней закрепляются вычислительные навыки, систематизируются и обобщаются сведения о преобразованиях выражений и решении уравнений.

2. Функции

Функция, область определения функции. Вычисление значений функции по формуле. График функции. Прямая пропорциональность и ее график. Линейная функция и ее график.

Основная цель - ознакомить учащихся с важнейшими функциональными понятиями и с графиками прямой пропорциональности и линейной функции общего вида.

3. Степень с натуральным показателем

Степень с натуральным показателем и ее свойства. Одночлен. Функции у = х2, у = х3 и их графики.

Основная цель — выработать умение выполнять действия над степенями с натуральными показателями.

4. Многочлены

Многочлен. Сложение, вычитание и умножение многочленов. Разложение многочленов на множители.

Основная цель — выработать умение выполнять сложение, вычитание, умножение многочленов и разложение многочленов на множители.

5. Формулы сокращенного умножения

Формулы (а ± b)2 = а2 ± b + b2, (а ± b)3 = а3 ± 3а2Ь + Заb2 ± b3, (а ± b) (а2 аb + b2) = а3 ± b3. Применение формул сокращенного умножения в преобразованиях выражений.

Основная цель — выработать умение применять формулы сокращенного умножения в преобразованиях целых выражений в многочлены и в разложении многочленов на множители.

В данной теме продолжается работа по формированию у учащихся умения выполнять тождественные преобразования целых выражений. Основное внимание в теме уделяется формулам (а - b) (а + b) = а2 - Ь2, (а ± b)2 = а2 +b + b2. Учащиеся должны знать эти формулы и соответствующие словесные формулировки, уметь применять их как «слева направо», так и «справа налево».

Наряду с указанными рассматриваются также формулы (a ± b)3 = а3 ± За2b + Заb2 ± b3, а3 ± b3 = (а + b) (а2 аb + b2). Однако они находят меньшее применение в курсе, поэтому не следует излишне увлекаться выполнением упражнений на их использование.

6. Системы линейных уравнений

Система уравнений. Решение системы двух линейных уравнений с двумя переменными и его геометрическая интерпретация. Решение текстовых задач методом составления систем уравнений.

Основная цель - ознакомить учащихся со способом решения систем линейных уравнений с двумя переменными, выработать умение решать системы уравнений и применять их при решении текстовых задач.

алгебры. Применение систем упрощает процесс перевода данных задачи с обычного языка на язык уравнений.

7.Повторение

Требования к математической подготовке учащихся

В результате изучения алгебры ученик должен

знать/понимать

  • существо понятия математического доказательства; примеры доказательств;

  • существо понятия алгоритма; примеры алгоритмов;

  • как используются математические формулы, уравнения; примеры их применения для решения математических и практических задач;

  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

  • формулы сокращенного умножения;

уметь

  • составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;

  • выполнять основные действия со степенями с натуральными показателями, с одночленами и многочленами; выполнять разложение многочленов на множители; сокращать алгебраические дроби;

  • решать линейные уравнения и уравнения, сводящиеся к ним, системы двух линейных уравнений с двумя переменными;

  • решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;

  • определять координаты точки плоскости, строить точки с заданными координатами, строить графики линейных функций и функции у=х2;

  • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

  • определять свойства функции по ее графику; применять графические представления при решении уравнений и систем;

  • описывать свойства изученных функций, строить их графики;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;

  • моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;

  • описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

  • интерпретации графиков реальных зависимостей между величинами.


1. Выражения, тождества. Уравнения (19 ч)

Числовые выражения и выражения с переменными. Простейшие преобразования выражений. Уравнение с одним неизвестным и его корень, линейное уравнение. Решение задач методом уравнений.

Цель - систематизировать и обобщить сведения о преобразовании выражений и решении уравнений с одним неизвестным, полученные учащимися в курсе математики 5,6 классов.

Знать какие числа являются целыми, дробными, рациональными, положительными, отрицательными и др.; свойства действий над числами; знать и понимать термины «числовое выражение», «выражение с переменными», «значение выражения», тождество, «тождественные преобразования».

Уметь осуществлять в буквенных выражениях числовые подстановки и выполнять соответствующие вычисления; сравнивать значения буквенных выражений при заданных значениях входящих в них переменных; применять свойства действий над числами при нахождении значений числовых выражений.

Статистические характеристики.

Цель - понимать практический смысл статистических характеристик.

Знать простейшие статистические характеристики.

Уметь в несложных случаях находить эти характеристики для ряда числовых данных.

2. Функции (12 ч)

Функция, область определения функции, Способы задания функции. График функции. Функция у=кх+Ь и её график. Функция у=кх и её график.

Цель - познакомить учащихся с основными функциональными понятиями и с графиками функций у=кх+Ь, у=кх.

Знать определения функции, области определения функции, области значений, что такое аргумент, какая переменная называется зависимой, какая независимой; понимать, что функция - это математическая модель, позволяющая описывать и изучать разнообразные зависимости между реальными величинами, что конкретные типы функций (прямая и обратная пропорциональности, линейная) описывают большое разнообразие реальных зависимостей.

Уметь правильно употреблять функциональную терминологию (значение функции, аргумент, график функции, область определение, область значений), понимать ее в тексте, в речи учителя, в формулировке задач; находить значения функций, заданных формулой, таблицей, графиком; решать обратную задачу; строить графики линейной функции, прямой и обратной пропорциональности; интерпретировать в несложных случаях графики реальных зависимостей между величинами, отвечая на поставленные вопросы

3. Степень с натуральным показателем (13ч)

Степень с натуральным показателем и её свойства. Одночлен. Функции у=х2, у=х3, и их графики.

Цель - выработать умение выполнять действия над степенями с натуральными показателями.

Знать определение степени, одночлена, многочлена; свойства степени с натуральным показателем, свойства функций у=х2 , у=х3 .

Уметь находить значения функций, заданных формулой, таблицей, графиком; решать обратную задачу; строить графики функций у=х2, у=х3; выполнять действия со степенями с натуральным показателем; преобразовывать выражения, содержащие степени с натуральным показателем; приводить одночлен к стандартному виду.

4. Многочлены (18 ч)

Многочлен. Сложение, вычитание и умножение многочленов. Разложение многочлена на множители.

Цель - выработать умение выполнять сложение, вычитание, умножение многочленов и разложение многочленов на множители.

Знать определение многочлена, понимать формулировку заданий: «упростить выражение», «разложить на множители».

Уметь приводить многочлен к стандартному виду, выполнять действия с одночленом и многочленом; выполнять разложение многочлена вынесением общего множителя за скобки; умножать многочлен на многочлен, раскладывать многочлен на множители способом группировки, доказывать тождества.

5. Формулы сокращённого умножения (17 ч)

Формулы (a±b) = a2 ±2ab+b2, (a-b)(a + b) = а2–b2 ,[{a±b)(a2+ab+b2)]. Применение формул сокращённого умножения к разложению на множители.

Цель - выработать умение применять в несложных случаях формулы сокращённого умножения для преобразования целых выражений в многочлены и для разложения многочленов на множители.

Знать формулы сокращенного умножения: квадратов суммы и разности двух выражений; различные способы разложения многочленов на множители.

Уметь читать формулы сокращенного умножения, выполнять преобразование выражений применением формул сокращенного умножения: квадрата суммы и разности двух выражение, умножения разности двух выражений на их сумму; выполнять разложение разности квадратов двух выражений на множители; применять различные способы разложения многочленов на множители; преобразовывать целые выражения; применять преобразование целых выражений при решении задач.

6. Системы линейных уравнений (15 ч)

Система уравнений с двумя переменными. Решение систем двух линейных уравнений с двумя переменными. Решение задач методом составления систем уравнений.

Цель - познакомить учащихся со способами решения систем линейных уравнений с двумя переменными, выработать умение решать системы уравнений и применять их при решении текстовых задач.

Знать, что такое линейное уравнение с двумя переменными, система уравнений, знать различные способы решения систем уравнений с двумя переменными: способ подстановки, способ сложения; понимать, что уравнение - это математический аппарат решения разнообразных задач из математики, смежных областей знаний, практики.

Уметь правильно употреблять термины: «уравнение с двумя переменными», «система»; понимать их в тексте, в речи учителя, понимать формулировку задачи «решить систему уравнений с двумя переменными»; строить некоторые графики уравнения с двумя переменными; решать системы уравнений с двумя переменными различными способами.

8. Повторение. Решение задач (8 ч)

Закрепление знаний, умений и навыков, полученных на уроках за курс алгебры 7 класса.




Содержание тем учебного курса 7 класса


2

1.

Выражения

5


2.

Преобразование выражений

4


3.

Уравнения с одной переменной

5


4.

Статистические характеристики

5



Глава 2. Функции

12

1

5.

Функции и их графика

4


6.

Линейная функция

8



Глава 3. Степень с натуральным показателем

13

1

7.

Степень и её свойства

7


8.

Одночлены

6



Глава 4. Многочлены

18

2

9.

Сумма и разность многочленов

3


10.

Произведение одночлена и многочлена

7


11.

Произведение многочленов

8



Глава 5. Формулы сокращённого умножения

17

2

12.

Квадрат суммы и квадрат разности

4


13.

Разность квадратов. Сумма и разность кубов

7


14.

Преобразование целых выражений

6



Глава 6. Системы линейных уравнений

15

1

14.

Линейное уравнение с двумя переменными их системы

6


15.

Решение систем линейных уравнений

9



Повторение

8



Итого

102

9








Учебно-методического и материально-технического обеспечения образовательного процесса

Алгебра 7 класс:

  1. Алгебра: 7—9 кл.: элементы статистики и теории вероятностей: учеб.пособие / Ю. Н. Макарычев, Н. Г. Миндюк. — М.: Просвещение, 2008.

  2. Макарычев Ю. Н. Алгебра: 7 кл. / Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова. — М.: Просвещение, 2007—2013.

  3. Макарычев Ю. Н. Алгебра: 9 кл. / Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков и др. — М.: Просвещение, 2008-2011.

  4. Макарычев Ю. Н.Изучение алгебры в 7—9 кл.: пособие для учителей / Ю. Н. Макарычев, Н. Г. Миндюк, С. Б. Суворова и др. — М.: Просвещение, 2009.

  5. Пичурин Л. Ф. За страницами учебника алгебры / Ф. Пичурин. — М.: Просвещение, 1991.

  6. Пойа Дж. Как решать задачу? / Дж. Пойа. — М.: Просвещение, 1991.

  7. www.ege.edu.ru Аналитические отчёты. Результаты ЕГЭ. Федеральный институт педагогических измерений; Министерство образования и науки РФ, Федеральная служба по надзору в сфере образования и науки. (2003—2009 гг.).

  8. Интернет-ресурсы на русском языке [link]