ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Рабочая программа составлена на основе Примерной программы основного общего образования по математике
Закон Российской Федерации от 10.07.1992г. № 3266-1 «Об образовании».
Государственный стандарт общего образования (приказ Минобразования России №1089 от 5 марта 2004г.) и ФБУП (приказ МО РФ №1312 от 09.03.2004г.).
Письмо МО России от 23.09.2003г №03-93 ин/13-03 «О введении элементов комбинаторики, статистики и теории вероятностей в содержание математического образования основной школы».
Концепция профильного обучения на старшей ступени общего образования, утверждённая приказом Министерства образования РФ № 2783 от 18.07.2002г.
Примерные программы основного общего и среднего (полного) общего образования по математике (письмо Департамента государственной политики в образовании МО и Н РФ от 07.06.2005 г. №03- 1263).
Приказ Министерства образования и науки Российской Федерации от 27.12, 2011 №2885 «Об утверждении федеральных перечней учебников, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных учреждениях, реализующих образовательные программы общего образования и имеющих государственную аккредитацию, на 2012/2013 учебный год».)
Согласно Федеральному базисному учебному плану для образовательных учреждений Российской Федерации для обязательного изучения математики на этапе основного общего образования отводится 6 часов в неделю всего 204 часа, из них на геометрию - 2 часа (68 часов), на алгебру – 4 часа (136 часов) что соответствует учебному плану базовому уровню.
Краткая характеристика:
Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют ' в учебных курсах.
Изучение математики на ступени основного общего образования направлено на достижение следующих целей:
Цели изучения:
1. овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
2. интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность • мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
3. формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
4. воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно- технического прогресса;
5. развитие вычислительных и формально-оперативных алгебраических умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов (физика, химия. основы информатики и вычислительной техники), усвоение аппарата уравнений и неравенств как основного средства математического моделирования прикладных задач, осуществление функциональной подготовки школьников. В ходе изучения курса учащиеся овладевают приёмами вычислений на калькуляторе.
Задачи курса:
- ввести понятия квадратного трехчлена, корня квадратного трехчлена, изучить формулу разложения квадратного трехчлена на множители;
- расширить сведения о свойствах функций, познакомить со свойствами и графиком квадратичной функции и степенной функции;
- истематизировать и обобщить сведения о решении целых и дробных рациональных уравнений с одной переменной ;
- научить решать квадратичные неравенства;
- завершается изучение систем уравнений с двумя переменными;
- вводится понятие неравенства с двумя переменными и системы неравенств с двумя переменными;
- вводится понятие последовательности, изучается арифметическая и геометрическая прогрессии;
- ввести элементы комбинаторики и теории вероятностей.
Место предмета в учебном плане
Согласно Федеральному базисному учебному плану для образовательных учреждений Российской Федерации для обязательного изучения математики на этапе основного общего образования отводится 6 часов в неделю всего 204 часа, из них на геометрию - 2 часа (68 часов), на алгебру – 4 часа (136 часов) что соответствует учебному плану базовому уровню.
Формы и методы обучения:
1. Определение адекватных способов решения учебной задачи на основе заданных алгоритмов.
2. Комбинирование известных алгоритмов деятельности в ситуациях, не предполагающих стандартное применение одного из них.
3. Творческое решение учебных и практических задач: умение
мотивированно отказываться от образца, искать оригинальные решения;
самостоятельное выполнение различных творческих работ; участие в
проектной деятельности.
В результате изучения математики в 9 классе ученик должен
знать/понимать
существо понятия математического доказательства; приводить примеры доказательств;
существо понятия алгоритма; приводить примеры алгоритмов;
как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
как потребности практики привели математическую науку к необходимости расширения понятия числа;
вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;
смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации.
Алгебра
уметь
составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;
решать линейные и квадратные неравенства с одной переменной и их системы,
решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
изображать числа точками на координатной прямой;
определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;
распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;
находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;
описывать свойства изученных функций, строить их графики;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
выполнения расчетов по формулам, для составления формул, выражающих зависимости между реальными величинами; для нахождения нужной формулы в справочных материалах;
моделирования практических ситуаций и исследовании построенных моделей с использованием аппарата алгебры;
описания зависимостей между физическими величинами соответствующими формулами, при исследовании несложных практических ситуаций;
интерпретации графиков реальных зависимостей между величинами.
Геометрия
уметь
пользоваться геометрическим языком для описания предметов окружающего мира;
распознавать геометрические фигуры, различать их взаимное расположение;
изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;
распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;
в простейших случаях строить сечения и развертки пространственных тел;
проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;
вычислять значения геометрических величин (длин, углов, площадей, объемов); в том числе: для углов от 0 до 180° определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;
решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, соображения симметрии;
проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
решать простейшие планиметрические задачи в пространстве;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
описания реальных ситуаций на языке геометрии;
расчетов, включающих простейшие тригонометрические формулы;
решения геометрических задач с использованием тригонометрии
решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);
построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).
Элементы логики, комбинаторики, статистики и теории вероятностей
уметь
проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;
извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;
решать комбинаторные задачи путем систематического перебора возможных вариантов и с использованием правила умножения;
вычислять средние значения результатов измерений;
находить частоту события, используя собственные наблюдения и готовые статистические данные;
находить вероятности случайных событий в простейших случаях;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
выстраивания аргументации при доказательстве и в диалоге;
распознавания логически некорректных рассуждений;
записи математических утверждений, доказательств;
анализа реальных числовых данных, представленных в виде диаграмм, графиков;
решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, длин, площадей, объемов, времени, скорости;
решения учебных и практических задач, требующих систематического перебора вариантов;
сравнения шансов наступления случайных событий, для оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;
понимания статистических утверждений.
Содержание курса
АЛГЕБРА
1. Квадратичная функция (29 ч)
Определение функции, способы задания функции. Область определения, область значения функции. Свойства функции: монотонность, ограниченность, Четные и нечетные функции. Наибольшее и наименьшее значение.
2. Уравнения и неравенства с одной переменной (20 ч)
Решение рациональные неравенства методом интервалов. Решение систем рациональные неравенства.
3. Уравнения и неравенства с двумя переменными (24 ч)
Уравнение с двумя переменными, его решение, график., Системы рациональных уравнений основные методы их решений: графический, подстановки, сложения.. Понятие о равносильных системах уравнений. Решение задач с помощью систем уравнений.
4. Прогрессии (17 ч.)
Определение числовой последовательности и способы ее задания: аналитический, словесный, рекуррентный. Арифметические и геометрические последовательности: определение, Формула n- члена, формулы суммы n членов, характеристические свойства.
5. Элементы комбинаторики, статистики и теории вероятностей (17 ч.)
Числовая окружность. Числовая окружность и координатная плоскость. Определение синуса, косинуса, тангенса, их основные значения, знаки по четвертям. Основные тригонометрические тождества и их применения для вычисления значений тригонометрических функций.
6.Повторение. (29 ч.)
Основная цель – подготовить учащихся к итоговой аттестации.
Список умений, на овладение которых может быть направлена работа по повторению:
– выполнение преобразований целых и дробных выражений, действия над степенями с целыми показателями;
– выполнение преобразований числовых выражений, содержащих квадратные корни;
– нахождение значений буквенных выражений при заданных значениях букв;
– решение линейных и квадратных уравнений, простейших дробно-рациональных уравнений;
– решение систем двух уравнений первой степени и систем, в которых одно из уравнений – второй степени;
– решение задач методом уравнений;
– решение линейных неравенств и их систем, неравенств второй степени, применение свойств неравенств для оценки значений выражений;
– построение и чтение графиков линейной и квадратичной функций, прямой и обратной пропорциональностей;
– вычисление координат точек пересечения прямых, прямой и параболы, нахождение нулей функций, вычисление координат точек пересечения графиков с осями координат;
– интерпретация графиков реальных зависимостей.
ГЕОМЕТРИЯ
1.Векторы. Метод координат (19 часов)
Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Простейшие задачи в координатах. Уравнения окружности и прямой. Применение векторов и координат при решении задач.
Цель: научить обучающихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач.
Вектор определяется как направленный отрезок и действия над векторами вводятся так, как это принято в физике, т. е. как действия с направленными отрезками. Основное внимание должно быть уделено выработке умений выполнять операции над векторами (складывать векторы по правилам треугольника и параллелограмма, строить вектор, равный разности двух данных векторов, а также вектор, равный произведению данного вектора на данное число):
На примерах показывается, как векторы могут применяться к решению геометрических задач. Демонстрируется эффективность применения формул для координат середины отрезка, расстояния между двумя точками, уравнений окружности и прямой в конкретных геометрических задачах, тем самым дается представление об изучении геометрических фигур с помощью методов алгебры.
2. Соотношения между сторонами и углами треугольника. Скалярное произведение векторов (13 ч).
Синус, косинус и тангенс угла. Теоремы синусов и косинусов. Решение треугольников. Скалярное произведение векторов и его применение в геометрических задачах.
Цель: развить умение обучающихся применять тригонометрический аппарат при решении геометрических задач.
Синус и косинус любого угла от 0° до 180° вводятся с помощью единичной полуокружности, доказываются теоремы синусов и косинусов и выводится еще одна формула площади треугольники (половина произведения двух сторон на синус угла между ними). Этот аппарат применяется к решению треугольников.
Скалярное произведение векторов вводится как в физике (произведение для векторов на косинус угла между ними). Рассматриваются свойства скалярного произведения и его применение при решении геометрических задач.
Основное внимание следует уделить выработке прочных навыков в применении тригонометрического аппарата при решении геометрических задач.
3. Длина окружности и площадь круга (12 ч).
Правильные многоугольники. Окружности, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности. Площадь круга.
Цель: расширить знание обучающихся о многоугольниках; рассмотреть понятия длины окружности и площади круга и формулы для их вычисления.
В начале темы дается определение правильного многоугольника и рассматриваются теоремы об окружностях, описанной около правильного многоугольника и вписанной в него. С помощью описанной окружности решаются задачи о построении правильного шестиугольника и правильного 2*n-угольника, если дан правильный n-угольник.
Формулы, выражающие сторону правильного многоугольника и радиус вписанной в него окружности через радиус описанной окружности, используются при выводе формул длины окружности и площади круга. Вывод опирается на интуитивное представление о пределе: при неограниченном увеличении числа сторон правильного многоугольника, вписанного в окружность, его периметр стремится к длине этой окружности, а площадь — к площади круга, ограниченного окружностью.
4. Движение (8 ч).
Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрии. Параллельный перенос. Поворот. Наложения и движения.
Цель: познакомить обучающихся с понятием движения и его свойствами, с основными видами движений, со взаимоотношениями наложений и движений.
Движение плоскости вводится как отображение плоскости на себя, сохраняющее расстояние между точками. При рассмотрении видов движении основное внимание уделяется построению образов точек, прямых, отрезков, треугольников при осевой и центральной симметриях, параллельном переносе, повороте. На эффектных примерах показывается применение движений при решении геометрических задач.
Понятие наложения относится в данном курсе к числу основных понятий. Доказывается, что понятия наложения и движения являются эквивалентными: любое наложение является движением плоскости и обратно. Изучение доказательства не является обязательным, однако следует рассмотреть связь понятий наложения и движения.
5. Об аксиомах планиметрии (2 ч).
Беседа об аксиомах геометрии.
Цель: дать более глубокое представление о системе аксиом планиметрии и аксиоматическом методе.
В данной теме рассказывается о различных системах аксиом геометрии, в частности о различных способах введения понятия равенства фигур.
6. Повторение. Решение задач (14 ч ).
Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс геометрии 9 класса.
Требования к уровню подготовки обучающихся
В ходе преподавания геометрии в 9 классе, работы над формированием у обучающихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:
планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;
решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;
исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;
проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;
поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.
В результате изучения курса геометрии 9 класса обучающиеся должны:
знать/понимать
существо понятия математического доказательства; примеры доказательств;
существо понятия алгоритма; примеры алгоритмов;
как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
как потребности практики привели математическую науку к необходимости расширения понятия числа;
вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;
смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;
уметь
пользоваться языком геометрии для описания предметов окружающего мира;
распознавать геометрические фигуры, различать их взаимное расположение;
изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;
распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;
в простейших случаях строить сечения и развертки пространственных тел;
проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;
вычислять значения геометрических величин (длин, углов, площадей, объемов), в том числе: для углов от 0 до 180 определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;
решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;
проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
решать простейшие планиметрические задачи в пространстве;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
описания реальных ситуаций на языке геометрии;
расчетов, включающих простейшие тригонометрические формулы;
решения геометрических задач с использованием тригонометрии
решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства); построений геометрическими инструментами (линейка, угольник, циркуль, транспортир.
Распределение изучения тем программы.
Литература
1. Программы. Алгебра. 7 – 9 классы. Авторы программы - И.И. Зубарева, А.Г. Мордкович. Москва. «Мнемозина».2009 г.
2. Учебник «Алгебра, 9 класс».Автор: А.Г. Мордкович. Мнемозина. Москва, 2010.
3. Задачник «Алгебра, 9 класс».Автор: А.Г. Мордкович. Мнемозина. Москва, 2010.
4. Алгебра-9. Контрольные работы. Ю.П. Дудницин, Е.Е. Тульчинская. Под ред. А.Г. Мордковича.
5. Алгебра-9. Самостоятельные работы. Л.А. Александрова. Под ред. А.Г. Мордковича.
6. Тесты. Авторы: А.Г. Мордкович, Е.Е. Тульчинская.
7. Методическое пособие для учителя. Алгебра, 7-9. Автор: А.Г. Мордкович.
8. Программы общеобразователных учреждений. Геометрия. 7 – 9 классы. Составитель: Т.А. Бурмистрова. Москва «Просвещение» 2009.
9. Геометрия 7-9 классы Л.С.Атанасян, В.Ф.Бутузов, С.Б.Каданцев, Э.Г.Позняк, И.И.Юдина. Москва, «Просвещение», 2010г.
10. Н.Ф. Гаврилова. Поурочные разработки по геометрии. Дифференцированный подход