Рабочая программа общая по математике 5-6 класс

Автор публикации:

Дата публикации:

Краткое описание: ...


  1. Пояснительная записка.

Данная рабочая программа ориентирована на учащихся 5-6 классов и реализуется на основе следующих документов:

Примерные программы по учебным предметам. Математика. 5-9 классы. – 3-е изд., перераб. – М.: Просвещение, 2011. – 64 с. - (Стандарты второго поколения).

Федеральный государственный образовательный стандарт основного общего образования /Министерство образования и науки Российской Федерации.- М. :Просвещение, 2011 – 48 с.- (Стандарты второго поколения)

Программа соответствует учебникам: Математика. 5 класс: учебник для общеобразовательных организаций / [С.М. Никольский, М.К. Потапов. Н.Н. Решетников, А.В. Шевкин]. – 15-е изд. – М.:Просвещение, 2016. и Математика. 6 класс: учебник для общеобразовательных организаций / [С.М. Никольский, М.К. Потапов. Н.Н. Решетников, А.В. Шевкин]. – 15-е изд. – М.:Просвещение, 2016

Сознательное овладение учащимися системой арифметических знаний и умений необходимо в повседневной жизни, для изучения смежных дисциплин и продолжения образования.

Практическая значимость школьного курса математики 5-6 классов обусловлена тем, что её объектом являются количественные отношения действительного мира. Математическая подготовка необходима для понимания принципов устройства и использования современной техники, восприятия научных и технических понятий и идей. Математика является языком науки и техники. С её помощью моделируются и изучаются явления и процессы, происходящие в природе.

Арифметика является одним из опорных предметов основной школы: она обеспечивает изучение других дисциплин. В первую очередь это относится к предметам естественно-научного цикла, в частности к физике. Развитие логического мышления учащихся при изучении математике в 5-6 классах способствует усвоению предметов гуманитарного цикла. Практические умения и навыки арифметического характера необходимы для трудовой и профессиональной подготовки школьников.

Развитие у учащихся правильных представлений о сущности и происхождении арифметических абстракций, о соотношении реального и идеального, о характере отражения математической наукой явлений и процессов реального мира. О месте арифметики в системе наук и роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения учащихся, а также формированию качеств мышления, необходимых для адаптации в современном информационном обществе.

Требуя от учащихся умственных и волевых усилий, концентрации внимания, активности воображения, арифметика развивает нравственные черты личности (настойчивость, целеустремленность, творческую активность, самостоятельность, ответственность, трудолюбие, дисциплину и критичность мышления) и умение аргументированно отстаивать свои взгляды и убеждения, а также способность принимать самостоятельные решения. Активное использование и решение текстовых задач на всех этапах учебного процесса развивают творческие способности школьников.

Изучение математики в 5-6 классах позволяет формировать умения и навыки умственного труда: планирование своей работы, поиск рациональных путей её выполнения, критическую оценку результатов. В процессе изучения математики школьники учатся излагать свои мысли ясно и исчерпывающе, лаконично и ёмко, приобретают навыки чёткого, аккуратного и грамотного выполнения математических записей.

Важнейшей задачей школьного курса арифметики является развитие логического мышления учащихся. Сами объекты математических умозаключений и принятые в арифметике правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить чёткие определения, развивают логическую интуицию, кратко и наглядно раскрывают механизм логических построений и учат их применению. Показывая внутреннюю гармонию математики, формируя понимание красоты и изящества математических рассуждений, арифметика вносит значительный вклад в эстетическое воспитание учащихся.


  1. Общая характеристика курса математики в 5-6 классах.

В курсе математики 5-6 классов можно выделить следующие основные содержательные линии: арифметика; элементы алгебры; наглядная геометрия. Наряду с этим в содержание включены две дополнительные методологические темы: множества и математика в историческом развитии, что связано с реализацией целей обще интеллектуального и общекультурного развития учащихся. Содержание каждой из этих тем разворачивается в содержательно- методическую линию, пронизывающую все основные содержательные линии. При этом первая линия – «Множества» - служит цели овладения учащимися некоторыми элементами универсального математического языка, вторая – «математика в историческом развитии» - способствует созданию общекультурного, гуманитарного фона изучения курса.

Содержание линии «Арифметика» служит фундаментом для дальнейшего изучения учащимися математики и смежных дисциплин, способствует развитию не только вычислительных навыков, но и логического мышления, формированию умения пользоваться алгоритмами, способствует развитию умений планировать и осуществлять деятельность, направленную на решение задач, а также приобретению практических навыков, необходимых в повседневной жизни.

Содержание линии «Элементы алгебры» систематизирует знания о математическом языке, показывая применение букв для обозначения чисел и записи свойств арифметических действий, а также для нахождения неизвестных компонентов арифметических действий.

Содержание линии «Наглядная геометрия» способствует формированию у учащихся первичных представлений о геометрических абстракциях реального мира, закладывает основы формирования правильной геометрической речи, развивает образное мышление и пространственные представления.

Линия «Вероятность и статистика» - обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим прежде всего для формирования у учащихся функциональной грамотности – умения воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах.

При изучении статистики и вероятности обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.

  1. Описание места предмета в учебном плане школы

Учебный план школы на изучение математики в 5-6 классах основной школы отводит 5 часов в неделю в течение каждого года обучения, всего по 170 уроков. В соответствии с образовательными запросами учащихся и их родителей (законных представителей) и с целью развития математического мышления и овладения конкретными математическими компетентностями и так как в школе математика с 7 по 9 класс изучается на углубленном уровне, то в 5 классе и 6 классе количество часов может быть увеличено до 6 часов в неделю (всего по 214 уроков) за счёт часов части учебного плана, формируемой участниками образовательного процесса. Дополнительные часы используются для расширения знаний и умений по отдельным темам всех разделов курса.


  1. Личностные, метапредметные и предметные результаты освоения содержания курса.

Программа позволяет добиваться следующих результатов освоения образовательной программы основного общего образования:

Личностные:

  1. ответственного отношения к учению, готовности и способности, обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;

  2. формирования коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, учебно-исследовательской, творческой и других видах деятельности;

  3. умения ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

  4. первоначального представления о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;

  5. критичности мышления, умения распознавать логически некорректные высказывания, отличать гипотезу от факта;

  6. креативности мышления, инициативы, находчивости. Активности при решении арифметических задач;

  7. умения контролировать процесс и результат учебной математической деятельности;

  8. формирование способности к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

метапредметные:

  1. способности самостоятельно планировать альтернативные пути достижения целей, осознано выбирать наиболее эффективные способы решения учебных и познавательных задач;

  2. умения осуществлять контроль по образцу и вносить необходимые коррективы;

  3. способности адекватно оценивать правильность или ошибочность выполнения учебной задачи, ее объективную трудность и собственные возможности ее решения;

  4. умения устанавливать причинно-следственные связи; строить логические рассуждения, умозаключения (индуктивные, дедуктивные и по аналогии) и выводы;

  5. умения создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;

  6. развития способности организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, взаимодействовать и находить общие способы работы; умения работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; слушать партнера; формулировать, аргументировать и отстаивать свое мнение;

  7. формирование учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);

  8. первоначального представления об идеях и о методах математики как об универсальном языке науки и техники;

  9. развития способности видеть математическую задачу в других дисциплинах, в в окружающей жизни;

  10. умения находить в различных источниках иформацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

  11. умения понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;

  12. умения выдвигать гипотезы при решении учебных задач и понимания необходимости их проверки;

  13. понимания сущности алгоритмических предписаний и умения действовать в соответствии с предложенным алгоритмом;

  14. умения самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

  15. способности планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

предметые:

  1. умения работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), развития способности обосновывать суждения, проводить классификацию;

  2. владения базовым понятийным аппаратом: иметь представление о числе, дроби, процентах, об основных геометрических объектах (точка, прямая, ломаная, угол, многоугольник, многогранник, круг, окружность, шар, сфера и пр.), формирования о статистических закономерностях в реальном мире и различных способах их изучения;

  3. умения выполнять арифметические преобразования рациональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;

  4. умения пользоваться изученными математическими формулами;

  5. знания основных способов представления и анализа статистических данных; умения решать задачи с помощью перебора всех возможных вариантов;

  6. умения применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов.

  1. Содержание учебного предмета

5-й класс.

1. Повторение за курс начальной школы.

  1. Натуральные числа и нуль.

Ряд натуральных чисел. Десятичная запись, сравнение, сложение и вычитание натуральных чисел. Законы сложения. Умножение, законы умножения. Степень с натуральным показателем. Деление нацело, деление с остатком. Числовые выражения. Решение текстовых задач арифметическими методами.

  1. Измерение величин.

Прямая, луч, отрезок. Измерение отрезков и метрические единицы длины. Представление натуральных чисел на координатном луче. Окружность и круг, сфера и шар. Углы, измерение углов. Треугольники и четырехугольники. Прямоугольный параллелепипед. Площадь прямоугольника, объем прямоугольного параллелепипеда. Единицы площади, объема, массы, времени. Решение текстовых задач арифметическими методами.

  1. Делимость натуральных чисел.

Свойства и признаки делимости. Простые и составные числа. Делители натурального числа. Наибольший общий делитель, наименьшее общее кратное.

  1. Обыкновенные дроби.

Понятие дроби, равенство дробей (основное свойство дроби). Приведение дробей к общему знаменателю. Сравнение, сложение и вычитание дробей. Законы сложения. Умножение дробей, законы умножения. Деление дробей. Смешанные дроби и действия с ними. Представление дробей на координатном луче. Решение текстовых задач арифметическими методами.

  1. Повторение.


6-й класс.

  1. Отношения, пропорции, проценты.

Отношения, масштаб, пропорции, проценты. Круговые диаграммы. Решение текстовых задач арифметическими методами.

  1. Целые числа.

Отрицательные целые числа. Сравнение целых чисел. Арифметические действия с целыми числами. Законы сложения и умножения. Раскрытие скобок, заключение в скобки и действия с суммами нескольких слагаемых. Представление целых чисел на координатной оси.

  1. Рациональные числа.

Отрицательные дроби. Рациональные числа. Сравнение рациональных чисел. Арифметические. действия с дробями произвольного знака. Законы сложения и умножения. Смешанные дроби произвольного знака. Изображение рациональных чисел на координатной оси. Уравнения и решение задач с помощью уравнений.

  1. Десятичные дроби .

Положительные десятичные дроби. Сравнение и арифметические действия с положительными десятичными дробями. Десятичные дроби и проценты. Десятичные дроби любого знака. Приближение десятичных дробей, суммы, разности, произведения и частного двух чисел.

  1. Обыкновенные и десятичные дроби .

Периодические и непериодические десятичные дроби (действительные числа). Длина отрезка. Длина окружности. Площадь круга. Координатная ось. Декартова система координат па плоскости. Столбчатые диаграммы и графики.

  1. Повторение.





















  1. Тематическое планирование.


5 класс

п/п

Содержание материала

Кол-во часов

Характеристика основных видов деятельности ученика (на уровне учебных действий)

I

II

1.

Натуральные числа и нуль

46

52

Описывать свойства натурального ряда. Читать и записывать натуральные числа, сравнивать и упорядочивать их. Выполнять вычисления с натуральными числами; вычислять значения степеней. Формулировать законы арифметических действий, записывать их с помощью букв, преобразовывать на их основе числовые выражения, применять их для рационализации вычислений. Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью реальных предметов, схем, рисунков; строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию. Уметь решать задачи на понимание отношений «больше на …», «меньше на …», «больше в …», «меньше в …», а также понимания стандартных ситуаций, в которых используются слова «всего», «осталось» и т. п.; типовые задачи «на части», на нахождение двух чисел по их сумме и разности

2.

Измерение величин

30

38

Измерять с помощью линейки и сравнивать длины отрезков. Строить отрезки заданной длины с помощью линейки и циркуля. Выражать одни единицы измерения длин отрезков через другие. Представлять натуральные числа на координатном луче. Распознавать на чертежах, рисунках, в окружающем мире геометрические фигуры, конфигурации фигур (плоские и пространственные). Приводить примеры аналогов геометрических фигур в окружающем мире. Изображать геометрические фигуры и их конфигурации от руки и с использованием чертежных инструментов. Измерять с помощью транспортира и сравнивать величины углов. Строить углы заданной величины с помощью транспортира. Выражать одни единицы измерения углов через другие. Вычислять площади квадратов и прямоугольников, объемы куба и прямоугольного параллелепипеда, используя соответствующие формулы. Выражать одни единицы измерения площади, объема, массы, времени через другие. Решать задачи на движение, на движение по реке

3.

Делимость натуральных чисел

19

25

Формулировать определения делителя и кратного, простого и составного числа, свойства и признаки делимости чисел. Доказывать и опровергать утверждения о делимости чисел. Классифицировать натуральные числа (четные и нечетные, по остаткам от деления на 3 и т. п.). Решать задачи, связанные с использованием четности и с делимостью чисел.

4.

Обыкновенные дроби

65

75

Преобразовывать обыкновенные дроби с помощью основного свойства дроби. Приводить дроби к общему знаменателю, сравнивать и упорядочивать их. Выполнять вычисления с обыкновенными дробями. Знать законы арифметических действий, уметь записывать их с помощью букв и применять их для рационализации вычислений. Проводить несложные доказательные рассуждения с опорой на законы арифметических действий для дробей. Решать задачи на дроби, на все действия с дробями, на совместную работу. Выражать с помощью дробей сантиметры в метрах, граммы в килограммах, килограммы в тоннах и т.п. Выполнять вычисления со смешанными дробями. Вычислять площадь прямоугольника, объём прямоугольного параллелепипеда и другие вычисления с применением дробей. Представлять дроби на координатном луче

5.

Повторение

10

14


6 класс


1.

Отношения, пропорции, проценты

26

31

Использовать понятия отношение, масштаб, пропорции при решении задач. Приводить примеры использования этих понятий на практике. Решать задачи на пропорциональное деление и проценты (в том числе задачи из реальной практики); объяснять, что такое процент. Использовать знания о зависимостях (прямой и обратной пропорциональной) между величинами (скорость, время, расстояние; работа, производительность, время и т.п.) при решении текстовых задач; осмысливать текст задачи, извлекать необходимую информацию, строить логическую цепочку рассуждений; критически оценивать получены*й ответ. Представлять проценты в дробях и дроби в процентах. Осуществлять поиск информации (в СМИ), содержащей данные, выраженные в процентах, интерпретировать их. Выполнять сбор информации в несложных случаях, организовывать информацию в виде таблиц и круговых диаграмм. Приводить примеры случайных событий, достоверных и невозможных событий. Сравнивать шансы наступления событий; строить речевые конструкции с использованием словосочетаний более вероятно, маловероятно и др. Выполнять перебор всех возможных вариантов для пересчета объектов или комбинаций, выделять комбинации, отвечающие заданным условиям.

2.

Целые числа

34

39

Приводить примеры использования в окружающем мире положительных и отрицательных чисел (температура, выигрыш-проигрыш, выше-ниже уровня моря и т. п.). Характеризовать множество целых чисел. Приводить примеры конечных и бесконечных множеств чисел. Сравнивать и упорядочивать целые числа, выполнять вычисления с целыми числами. Формулировать и записывать с помощью букв свойства действий с целыми числами, применять их и правила раскрытия скобок, заключения в скобки для преобразования числовых выражений. Изображать положительные и отрицательные целые числа точками на координатной прямой. Находить в окружающем мире плоские фигуры, симметричные относительно точки. Изображать фигуры, симметричные относительно точки.


3.

Рациональные числа

38

45

Характеризовать множество рациональных чисел. Формулировать и записывать с помощью букв основное свойство дроби, свойства действий с рациональными числами, применять их для преобразования дробей и числовых выражений. Сравнивать и упорядочивать рациональные числа, выполнять вычисления с рациональными числами. Изображать положительные и отрицательные рациональные числа точками на координатной прямой. Решать несложные уравнения, первой степени на основе зависимостей между компонентами арифметических действий и с помощью переноса слагаемых с противоположным знаком в другую часть уравнения. Составлять буквенные выражения и уравнения по условиям задач. Решать задачи с помощью уравнения. Читать и составлять буквенные выражения, находить числовые значения буквенных выражений для заданных значений букв. Находить в окружающем мире фигуры, симметричные относительно прямой. Изображать фигуры, симметричные относительно прямой. Рассматривать простейшие сечения пространственных фигур.


4

Десятичные дроби

34

43

Читать и записывать десятичные дроби. Представлять дроби со знаменателем 10n в виде десятичных дробей и десятичные дроби в виде о дроби со знаменателем 10n. Сравнивать и упорядочивать десятичные дроби. Выполнять вычисления с десятичными дробями. Использовать эквивалентные представления чисел при их сравнении и вычислениях. Выполнять прикидку и оценку в ходе вычислений. Выражать одни единицы измерения массы, времени и т. п. в других единицах (метры в километрах и т. п. с помощью десятичных дробей). Округлять десятичные дроби, находить десятичные приближения обыкновенных дробей. Выполнять прикидку и оценку в ходе вычислений

5.

Обыкновенные и десятичные дроби

24

30

Представлять положительную обыкновенную дробь в виде конечной (бесконечной) десятичной дроби. Понимать, что любую обыкновенную дробь можно записать в виде периодической десятичной дроби, что периодическая десятичная дробь есть другая запись некоторой обыкновенной дроби. Записывать несложные периодические дроби в виде обыкновенных дробей. Приводить примеры непериодических десятичных дробей, понимать действительное число как бесконечную десятичную дробь, рациональное число как периодическую десятичную дробь, а иррациональное число как непериодическую бесконечную десятичную дробь. Сравнивать бесконечные десятичные дроби. Использовать формулы длины окружности и площади круга для решения задач, понимать, что число — иррациональное число, что для решения задач можно использовать его приближение. Строить на координатной плоскости точки и фигуры по заданным координатам, определять координаты точек. Строить столбчатые диаграммы, графики процессов, равномерного движения, решать простейшие задачи на анализ графика. Решать задачи на составление и разрезания фигур, находить равновеликие и равносоставленные фигуры. Изображать равные фигуры; симметричные фигуры. Конструировать орнаменты и паркеты.

6.

Повторение

14

16







  1. Описание учебно-методического и материально-технического обеспечения образовательного процесса


Помещение кабинета математики, его оборудование (мебель и средства ИКТ) удовлетворяют требованиям действующих Санитарно-эпидемиологических правил и нормативов (СанПиН 2.4.2.2821-10, СанПиН 2.2.2/2.4.1340-03).

Для отражения количественных показателей используется следующая система символических обозначений:

Д – демонстрационный экземпляр (1 экз.);

К – полный комплект (исходя из реальной наполняемости класса);

Ф – комплект для фронтальной работы (примерно в два раза меньше, чем полный комплект, то есть не менее 1 экз. на двух учащихся),

П – комплект, необходимый для практической работы в группах, насчитывающих по нескольку учащихся (5-7 экз.).


п/п

Наименования объектов и средств материально-технического обеспечения

Необходимое количество

Фактическая оснащенность

% оснащенности


1. Библиотечный фонд (книгопечатная продукция)

1.1

Стандарт основного общего образования по математике

Д

+

100%

1.2

Примерная программа по математике 5-9 класс

Д

+

100%

1.3

Учебники по математики для 5-6 класса

К

+

100%

1.4

Дидактические материалы по математике для 5-6 класса

Ф

+

100%

1.5

Сборник контрольных работ по математике для 5-6 класса

Ф

+

100%

1.6

Научная, научно-популярная, историческая литература

П

+

100%

1.7

Справочные пособия (энциклопедии, словари, сборники основных формул и т.п.)

П

+

100%

1.8

Методические пособия для учителя

Д

+

100%

2. Печатные пособия




2.1

Таблицы по математике для 5-6 класса

Д

+

100%

2.2

Портреты выдающихся деятелей математики

Д

+

100%

3. Информационно-коммуникативные средства

3.1

Мультимедийные обучающие программы и электронные учебные издания по основным разделам курса математики

Д/П

+

100%

4. Технические средства обучения

4.1

Мультимедийный компьютер

Д

+

100%

4.2

Сканер

Д

+

100%

4.3

Принтер лазерный

Д

+

100%

4.4

Копировальный аппарат

Д

+

100%

4.5

Мультимедиапроектор

Д

+

100%

4.6

Экран (на штативе или навесной)

Д

+

100%

5. Учебно-практическое и учебно-лабораторное оборудование

5.1

Аудиторная доска с магнитной поверхностью и набором приспособлений для крепления таблиц

Д

+

100%

5.2

Доска магнитная с координатной сеткой

Д



5.3

Комплект инструментов классных: линейка, транспортир, угольник300, 600), угольник (450, 450), циркуль

Д

+

100%

6. Специализированная учебная мебель

6.1

Компьютерный стол

Д

+

100%

6.2

Шкаф секционный для хранения оборудования

Д

+

100%

6.3

Шкаф секционный для хранения литературы и демонстрационного оборудования

Д

+

100%

6.4

Стенд экспозиционный

Д

+

100%

6.5

Ящики для хранения таблиц

Д

+

100%

6.6

Штатив для таблиц

Д

+

100%




  1. Планируемые результаты изучения курса математики в 5-6 классах.

Рациональные числа.

Ученик научится:

  1. понимать особенности десятичной системы счисления;

  2. владеть понятиями, связанными с делимостью натуральных чисел;

  3. выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;

  4. сравнивать и упорядочивать рациональные числа;

  5. выполнять вычисления с рациональными числами, сочетая устные и письменные приемы вычислений, применение калькулятора;

  6. использовать понятия и умения, связанные с пропорциональностью величин, процентами в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчеты.

Ученик получит возможность:

  1. познакомиться с позиционными системами счисления с основаниями, отличными от 10;

  2. углубить и развить представление о натуральных числах и свойствах делимости;

  3. научиться использовать приемы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.

Действительные числа.

Ученик научится:

Использовать начальные представления о множестве действительных чисел.

Ученик получит возможность:

  1. развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в человеческой практике;

  2. развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).

Измерения, приближения, оценки.

Ученик научится:

Использовать в ходе решения задач элементарные представления, связанные с приближенными значениями величин.

Ученик получит возможность:

  1. понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближенными, что по записи приближенных значений, содержащих в информационных источниках, можно судить о погрешности приближения;

  2. понять, что погрешности результата вычислений должна быть соизмерима с погрешностью исходных данных;

Наглядная геометрия.

Ученик научится:

  1. распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;

  2. распознавать развертки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;

  3. строить развертки куба и прямоугольного параллелепипеда;

  4. определять по линейным размерам развертки фигуры линейные размеры самой фигуры и наоборот;

  5. вычислять объем прямоугольного параллелепипеда.

Ученик получит возможность:

  1. вычислять объемы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;

  2. углубить и развить представление о пространственных геометрических фигура;

  3. применять понятие развертки для выполнения практических расчетов.