Рабочая программа
Алгебра и начала математического анализа
Профильный уровень 11 класс
Пояснительная записка
Настоящая рабочая программа по алгебре и началам анализа для средней общеобразовательной школы 11 класса составлена на основе:
1. Федерального компонента государственного стандартного образования, утвержденного приказом Минобразования России от 5 марта 2004 года № 1089 «Об утверждении федерального компонента государственных стандартов начального общего, основного и среднего (полного) общего образования»;
2. Примерных программ среднего (полного) общего образования (письмо Департамента государственной политики и образования Министерства образования и науки Российской Федерации от 07.06.2005 г. № 03-1263);
3. Приказа Министерства образования и науки Российской Федерации от 31.03.2014 №253 «Об утверждении федеральных перечней учебников, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных учреждениях, реализующих образовательные программы общего образования и имеющих государственную аккредитацию на 2014-2015 учебный год»;
4. Программы, выбранные общеобразовательным учреждением. Программы. Математика. 5-6 классы, Алгебра 7-9 классы. Алгебра и начала математического анализа. 10-11 классы. Авт.- сост. И. И. Зубарева, А. Г. Мордкович. – 2-е изд.,испр. И доп. – М. : Мнемозина, 2011.
Рабочая программа конкретизирует содержание блоков образовательного стандарта, дает распределение учебных часов по крупным разделам курса и последовательность их изучения.
Рабочая программа создавалась с опорой на «Примерную программу среднего (полного) общего образования математике базовый уровень» и авторскую программу для общеобразовательных школ с базовым изучением математики А.Г.Мордковича. В авторскую программу внесены некоторые изменения: данная программа отводит на изучение алгебры и начал анализа 136 часов в год, из расчета 4 часа в неделю.
Авторская программа взята за основу, так как разработан учебно - методический комплект для реализации данной программы, отвечающий требованиям стандартов нового поколения.
Актуальность изучения учебного предмета
Сознательное овладение учащимися системой алгебраических знаний и умений необходимо в повседневной жизни для изучения смежных дисциплин и продолжения образования.
Практическая значимость школьного курса алгебры обусловлена тем, что её объектом являются количественные отношения действительного мира. Математическая подготовка необходима для понимания принципов устройства и использования современной техники, восприятия научных и технических понятий и идей. Математика является языком науки и техники. С её помощью моделируются и изучаются явления и процессы, происходящие в природе.
Алгебра является одним из опорных предметов основной школы: она обеспечивает изучение других дисциплин. В первую очередь это относится к предметам естественно-научного цикла, в частности физике. Развитие логического мышления учащихся при обучении алгебре способствует усвоению предметов гуманитарного цикла. Практические умения и навыки алгебраического характера необходимы для трудовой и профессиональной подготовки школьников.
Развитие у учащихся правильных представлений о сущности и происхождении алгебраических абстракций, соотношении реального и идеального, характере отражения математической наукой явлений и процессов реального мира, месте алгебры в системе наук и роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения учащихся и качеств мышления, необходимых для адаптации в современном информационном обществе.
Требуя от учащихся умственных и волевых усилий, концентрации внимания, активности развитого воображения, алгебра развевает нравственные черты личности (настойчивость, целеустремлённость, творческую активность, самостоятельность, ответственность, трудолюбие, дисциплину и критичность мышления) и умение аргументированно отстаивать свои взгляды и убеждения, а также способность принимать самостоятельные решения.
Изучение алгебры, функций, вероятности и статистики существенно расширяет кругозор учащихся, знакомя их с индукцией и дедукцией, обобщением и конкретизацией, анализом и синтезом, классификацией и систематизацией, абстрагированием, аналогией. Активное использование задач на всех этапах учебного процесса развивает творческие способности школьников.
Изучение алгебры позволяет формировать умения и навыки умственного труда – планирование своей работы, поиск рациональных путей её выполнения, критическая оценка результатов. В процессе изучения алгебры школьники должны научиться излагать свои мысли ясно и исчерпывающе, лаконично и ёмко, приобрести навыки чёткого, аккуратного и грамотного выполнения математических записей.
Важнейшей задачей школьного курса алгебры является развитие логического мышления учащихся. Сами объекты математических умозаключений и принятые в алгебре правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить чёткие определения, развивают логическую интуицию, кратко и наглядно раскрывают механизм логических построений и учат их применению. Тем самым алгебра занимает одно из ведущих мест в формировании научно-теоретического мышления школьников. Раскрывая внутреннюю гармонию математики, формируя понимание красоты и изящества математических рассуждений, алгебра вносит значительный вклад в эстетическое воспитание учащихся.
Общая характеристика учебного предмета
Изучение алгебры нацелено на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира (одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у обучающихся представлений о роли математики в развитии цивилизации и культуры.
В 11 классе продолжается изучение нового раздела математики – начал математического анализа. Этот раздел характеризуется своеобразными логикой, подходами, методикой. Поэтому очень важно сразу заложить четкое и грамотное понимание основ высшей математики. Помимо подготовки к экзамену, такое понимание будет способствовать усвоению высшей математики в ВУЗе. Также в 11 классе рассматриваются элементы математической статистики и, комбинаторики и теории вероятностей. Кроме того, продолжается изучение алгебры - детально рассматриваются степенные, показательные, логарифмические функции, уравнения и неравенства.
11 класс необходимо рассматривать как целенаправленную подготовку к сдаче ЕГЭ, т.к. варианты этого экзамена содержат значительное количество задач, содержащих изучаемый материал.
Цели обучения
В направлении личностного развития:
1) развитие логического и практического мышления, культуры речи, способности к умственному эксперименту;
2) формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
3) воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
4) формирование качеств мышления, необходимых для адаптации в современном информационном обществе;
5) развитие интереса к математическому творчеству и математических способностей.
В метапредметном направлении:
1) формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
2) развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
3) формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимых для различных сфер человеческой деятельности.
В предметном направлении:
1) овладение математическими знаниями и умениями, необходимыми для продолжения обучения в общеобразовательных учреждениях, изучение смежных дисциплин, применения в повседневной жизни;
2) создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.
В ходе изучения курса учащиеся развивают навыки решения иррациональных, показательных и логарифмических уравнений, систем уравнений, неравенств; изучают и систематизируют способы интегрирования функций, учатся применять интегралы при решении различных задач, в том числе и физических, что способствует успешной сдаче ЕГЭ и дальнейшему эффективному обучению в ВУЗе. Во 2-ом полугодии вводятся элементы логики, комбинаторики, статистики и теории вероятностей.
В рамках указанных линий решаются следующие задачи:
• овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
• формирование интеллекта, а также личностных качеств, необходимых человеку для полноценной жизни, развиваемых математикой: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
• формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
• воспитание отношения к математике как к части общечеловеческой культуры, формирование понимания значимости математики для научно-технического прогресса.
Роль предмета в формировании ключевых компетенций
В основе обучения алгебры и начал анализа лежит овладение учащимися следующими видами компетенций: предметной, коммуникативной, организационной и общекультурной. В соответствии с этими видами компетенций выделены основные содержательно-целевые направления (линии) развития учащихся средствами предмета.
Предметная компетенция. Здесь под предметной компетенцией понимается осведомленность школьников о системе основных математических представлений и овладение ими основными предметными умениями. Формируются следующие образующие эту компетенцию представления: о математическом языке как средстве выражения математических законов, закономерностей и т.д.; о математическом моделировании как одном из важных методов познания мира. Формируются следующие образующие эту компетенцию умения: создавать простейшие математические модели, работать с ними и интерпретировать полученные результаты; приобретать и систематизировать знания о способах решения математических задач, а также применять эти знания и умения для решения многих жизненных задач.
Коммуникативная компетенция. Здесь под коммуникативной компетенцией понимается сформированность умения ясно и четко излагать свои мысли, строить аргументированные рассуждения, вести диалог, воспринимая точку зрения собеседника и в то же время подвергая ее критическому анализу. Формируются следующие образующие эту компетенцию умения: извлекать информацию из разного рода источников, преобразовывая ее при необходимости в другие формы (тексты, таблицы, схемы и т.д.).
Организационная компетенция. Здесь под организационной компетенцией понимается сформированность умения самостоятельно находить и присваивать необходимые учащимся новые знания. Формируются следующие образующие эту компетенцию умения: самостоятельно ставить учебную задачу (цель), разбивать ее на составные части, на которых будет основываться процесс ее решения, анализировать результат действия, выявлять допущенные ошибки и неточности, исправлять их и представлять полученный результат в форме, легко доступной для восприятия других людей.
Общекультурная компетенция. Здесь под общекультурной компетенцией понимается осведомленность школьников о математике как элементе общечеловеческой культуры, ее месте в системе других наук, а также ее роли в развитии представлений человечества о целостной картине мира. Формируются следующие образующие эту компетенцию представления: об уровне развития математики на разных исторических этапах; о высокой практической значимости математики с точки зрения создания и развития материальной культуры человечества, а также о важной роли математики с точки зрения формировании таких значимых черт личности, как независимость и критичность мышления, воля и настойчивость в достижении цели и др.
Место предмета в учебном плане
Базисный учебный (образовательный) план на изучение алгебры и начал анализа в 11(профильной группе) классе основной школы отводит 4 часа в неделю, 132 часа в течение всего учебного года.
Обязательный минимум содержания основных образовательных программ
Многочлены. Многочлены от одной и нескольких переменных. Теорема Безу. Схема Горнера. Симметричные и однородные многочлены. Уравнения высших степеней.
Степени и корни. Степенные функции. Понятие корня n-ой степени из действительного числа. Функции y=√х, их свойства и графики. Свойства корня n-ой степени. Преобразование выражений, содержащих радикалы. Обобщение понятий о показателе степени. Степенные функции, их свойства и графики. Дифференцирование и интегрирование. Извлечение корней n-ой степени из комплексных чисел.
Показательная и логарифмическая функция. Показательная функция, её свойства и график. Показательные уравнения и неравенства. Понятие логарифма. Логарифмическая функция, её свойства и график. Свойства логарифмов. Логарифмические уравнения и неравенства. Дифференцирование показательной и логарифмической функций.
Интеграл. Первообразная и неопределённый интеграл. Определённый интеграл, его вычисление и свойства. Вычисление площадей плоских фигур. Примеры применения интеграла в физике.
Элементы комбинаторики, статистики и теории вероятностей
Вероятность и геометрия. Независимые повторения испытаний с двумя исходами. Статистические методы обработки информации. Гауссова кривая. Закон больших чисел.
Уравнения и неравенства. Системы уравнений и неравенств
Равносильность уравнений. Общие методы решения уравнений. Уравнения с модулями. Иррациональные уравнения. Доказательство неравенств. Решение рациональных неравенств с одной переменной. Неравенства с модулями. Иррациональные неравенства. Уравнения и неравенства с двумя переменными. Диофантовы уравнения. Системы уравнений. Уравнения и неравенства с параметрами.
Требования к уровню подготовки выпускников
Программа обеспечивает достижение следующих результатов освоения образовательной программы основного общего образования:
В результате изучения математики ученик должен
знать/понимать [link]