МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
«УСТЬ-КИРАНСКАЯ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА-ИНТЕРНАТ»
на заседании МО учителей
Протокол № _____
от _____________ 20___г.
Руководитель МО
_________ /Лебедева Т.С./
«Согласовано»
Зам. директора по УВР школы
_____________ /Нечаева Т.С./
________________ 20______ г.
«Утверждаю»
Директор
___________/Имыгиров С.Л./
Приказ № _____
от _______________ 20 ____ г.
Рабочая программа
по геометрии
7 класс
Лебедевой Татьяны Сергеевны
2016 г.
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Статус документа
Настоящая программа по геометрии для основной общеобразовательной школы 7 класса составлена на основе федерального компонента государственного стандарта основного общего образования (приказ МОиН РФ от 05.03.2004г. № 1089), примерных программ по математике (письмо Департамента государственной политики в образовании Минобрнауки России от 07.07.2005г. № 03-1263), «Временных требований к минимуму содержания основного общего образования» (приказ МО РФ от 19.05.98. № 1236), примерной программы общеобразовательных учреждений по геометрии 7–9 классы, к учебному комплексу для 7-9 классов (авторы Л.С. Атанасян, В.Ф. Бутузов, С.В. Кадомцев и др., составитель Т.А. Бурмистрова – М: «Просвещение», 2008).
Рабочая программа выполняет две основные функции:
Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета.
Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации учащихся.
Общая характеристика учебного предмета
Геометрия – один из важнейших компонентов математического образования, необходимая для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.
Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса.
Цель изучения:
овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;
приобретение конкретных знаний о пространстве и практически значимых умений, формирование языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.
Место предмета в федеральном базисном учебном плане
Согласно федеральному базисному учебному плану на изучение математики в 7 классе отводится не менее 170 часов из расчета 5 ч в неделю, при этом разделение часов на изучение алгебры и геометрии может быть следующим:
5 часов в неделю алгебры в I четверть, 3 часа в неделю во II-IV четверти, итого 120 часов; 2 часа в неделю геометрии во II-IV четверти, итого 50 часов.
Количество учебных часов:
В год - 50 часов (II, III, IV четверти по 2 часа, всего 50 часов)
В том числе: Контрольных работ - 5
Формы промежуточной и итоговой аттестации: Промежуточная аттестация проводится в форме тестов, контрольных, самостоятельных работ.
Уровень обучения – базовый.
В данном классе ведущими методами обучения предмету являются: объяснительно-иллюстративный и репродуктивный, хотя используется и частично-поисковый. На уроках используются элементы следующих технологий: личностно ориентированное обучение, обучение с применением опорных схем, ИКТ.
Общеучебные умения, навыки и способы деятельности
В ходе преподавания геометрии в 7 классе, работы над формированием у обучающихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:
планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;
решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;
исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;
проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;
поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.
Результаты обучения
Результаты обучения представлены в Требованиях к уровню подготовки и задают систему итоговых результатов обучения, которых должны достигать все учащиеся, оканчивающие 7 класс. Эти требования структурированы по трем компонентам: «знать/понимать», «уметь», «использовать приобретенные знания и умения в практической деятельности и повседневной жизни».
ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ
КАЛЕНДАРНО-ТЕМАТИЧЕСКИЙ ПЛАН
Дата проведения
По плану
Фактически
Начальные геометрические сведения (7 часов)
1/1
Прямая и отрезок
2/2
Луч и угол
3/3
Сравнение отрезков и углов
4/4
Измерение отрезков
5/5
Измерение углов
6/6
Перпендикулярные прямые
7/7
Контрольная работа №1 по теме «Измерение отрезков и углов»
Треугольники (14 часов)
8/1
Первый признак равенства треугольников
9/2
Первый признак равенства треугольников
10/3
Первый признак равенства треугольников
11/4
Перпендикуляр к прямой. Медианы, биссектрисы и высоты треугольника
12/5
Свойства равнобедренного треугольника
13/6
Свойства равнобедренного треугольника
14/7
Второй признак равенства треугольников
15/8
Третий признак равенства треугольников
16/9
Решение задач по теме «Второй и третий признаки равенства треугольников»
17/10
Окружность
18/11
Построение циркулем и линейкой. Примеры задач на построение
19/12
Решение задач по теме «Треугольники»
20/13
Решение задач по теме «Треугольники»
21/14
Контрольная работа №2 по теме «Треугольники»
Параллельные прямые (9 часов)
22/1
Определение параллельных прямых. Признаки параллельности двух прямых
23/2
Признаки параллельности двух прямых
24/3
Решение задач по теме «Признаки параллельности двух прямых»
25/4
Об аксиомах геометрии. Аксиома параллельных прямых
26/5
Свойства параллельных прямых
27/6
Свойства параллельных прямых. Решение задач
28/7
Решение задач по теме «Параллельные прямые»
29/8
Решение задач по теме «Параллельные прямые»
30/9
Контрольная работа №3 по теме «Параллельные прямые»
Соотношения между сторонами и углами треугольника (16 часов)
31/1
Теорема о сумме углов треугольника
32/2
Внешний угол треугольника. Теорема о внешнем угле треугольника
33/3
Теорема о соотношениях между сторонами и углами треугольника
34/4
Неравенство треугольника
35/5
Решение задач по теме «Соотношения между сторонами и углами треугольника»
36/6
Контрольная работа №4 по теме «Соотношения между сторонами и углами треугольника»
37/7
Некоторые свойства прямоугольных треугольников
38/8
Признаки равенства прямоугольных треугольников
39/9
Решение задач по теме «Прямоугольные треугольники»
40/10
Решение задач по теме «Прямоугольные треугольники»
41/11
Расстояние от точки до прямой. Расстояние между параллельными прямыми
42/12
Построение треугольника по трём элементам
43/13
Построение треугольника по трём элементам. Задачи на построение
44/14
Построение треугольника по трём элементам. Задачи на построение
45/15
Решение задач по теме «Соотношения между сторонами и углами треугольника»
46/16
Контрольная работа №5 по теме «Прямоугольный треугольник. Построение треугольника по трем элементам»
Повторение. Решение задач (4 часа)
47/1
Измерение отрезков и углов; перпендикулярные прямые
48/2
Признаки равенства треугольников
49/3
Равнобедренные треугольники, сумма углов треугольника, прямоугольные треугольники
50/4
Параллельные прямые
СОДЕРЖАНИЕ КУРСА
Глава 1. Начальные геометрические сведения (7 часов)
Простейшие геометрические фигуры: прямая, точка, отрезок, луч, угол. Понятие равенства геометрических фигур. Сравнение отрезков и углов. Измерение отрезков, длина отрезка. Измерение углов, градусная мера угла. Смежные и вертикальные углы, их свойства. Перпендикулярные прямые.
Цель: систематизировать знания обучающихся о простейших геометрических фигурах и их свойствах; ввести понятие равенства фигур.
В данной теме вводятся основные геометрические понятия и свойства простейших геометрических фигур на основе наглядных представлений обучающихся путем обобщения очевидных или известных из курса математики 1— 6 классов геометрических фактов. Понятие аксиомы на начальном этапе обучения не вводится, и сами аксиомы не формулируются в явном виде. Необходимые исходные положения, на основе которых изучаются свойства геометрических фигур, приводятся в описательной форме. Принципиальным моментом данной темы является введение понятия равенства геометрических фигур на основе наглядного понятия наложения. Определенное внимание должно уделяться практическим приложениям геометрических понятий.
В результате изучения данной главы учащиеся должны:
знать: что такое прямая, точка, какая фигура называется отрезком, лучом, углом; определения вертикальных смежных углов.
уметь: изображать точки, лучи, отрезки, углы и прямые обозначать их; сравнивать отрезки и углы работать с транспортиром и масштабной линейкой; строить смежные и вертикальные углы.
Глава 2. Треугольники (14 часов)
Треугольник. Признаки равенства треугольников. Перпендикуляр к прямой. Медианы, биссектрисы и высоты треугольника. Равнобедренный треугольник и его свойства. Задачи на построение с помощью циркуля и линейки.
Цель: ввести понятие теоремы; выработать умение доказывать равенство треугольников с помощью изученных признаков; ввести новый класс задач — на построение с помощью циркуля и линейки.
Признаки равенства треугольников являются основным рабочим аппаратом всего курса геометрии. Доказательство большей части теорем курса и также решение многих задач проводится по следующей схеме: поиск равных треугольников — обоснование их равенства с помощью какого-то признака — следствия, вытекающие из равенства треугольников.
Применение признаков равенства треугольников при решении задач дает возможность постепенно накапливать опыт проведения доказательных рассуждений. На начальном этапе изучения и применения признаков равенства треугольников целесообразно использовать задачи с готовыми чертежами.
В результате изучения данной главы учащиеся должны:
знать и доказывать признаки равенства треугольников, теоремы о свойствах равнобедренного треугольника; определения медианы, высоты, биссектрисы треугольника; определение окружности.
уметь применять теоремы в решении задач; строить и распознавать медианы, высоты, биссектрисы; выполнять с помощью циркуля и линейки построения биссектрисы угла, отрезка равного данному середины отрезка, прямую перпендикулярную данной.
Глава 3. Параллельные прямые (9 часов)
Признаки параллельности прямых. Аксиома параллельных прямых. Свойства параллельных прямых.
Цель: ввести одно из важнейших понятий - понятие параллельных прямых; дать первое представление об аксиомах и аксиоматическом методе в геометрии; ввести аксиому параллельных прямых.
Признаки и свойства параллельных прямых, связанные с углами, образованными при пересечении двух прямых секущей (накрест лежащими, односторонними, соответственными), широко используются в дальнейшем при изучении четырехугольников, подобных треугольников, при решении задач, а также в курсе стереометрии.
В результате изучения данной главы учащиеся должны:
знать формулировки и доказательство теорем, выражающих признаки параллельности прямых;
уметь распознавать на рисунке пары односторонних и соответственных углов, делать вывод о параллельности прямых.
Глава 4. Соотношения между сторонами и углами треугольника (16 часов)
Сумма углов треугольника. Соотношение между сторонами и углами треугольника. Неравенство треугольника. Прямоугольные треугольники, их свойства и признаки равенства. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Построение треугольника по трем элементам.
Цель: рассмотреть новые интересные и важные свойства треугольников.
В данной теме доказывается одна из важнейших теорем геометрии — теорема о сумме углов треугольника. Она позволяет дать классификацию треугольников по углам (остроугольный, прямоугольный, тупоугольный), а также установить некоторые свойства и признаки равенства прямоугольных треугольников.
Понятие расстояния между параллельными прямыми вводится на основе доказанной предварительно теоремы о том, что все точки каждой из двух параллельных прямых равноудалены от другой прямой. Это понятие играет важную роль, и частности используется в задачах на построение.
При решении задач на построение в 7 классе следует ограничиться только выполнением и описанием построения искомой фигуры. В отдельных случаях можно провести устно анализ и доказательство, а элементы исследования должны присутствовать лишь тогда, когда это оговорено условием задачи.
В результате изучения данной главы учащиеся должны:
знать теорему о сумме углов в треугольнике и ее следствия; классификацию треугольников по углам; формулировки признаков равенства прямоугольных треугольников; определения наклонной, расстояния от точки до прямой
уметь доказывать и применять теоремы в решении задач, строить треугольник по трем элементам.
Повторение. Решение задач. (4 часа)
Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс геометрии 7 класса.
ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ОБУЧАЮЩИХСЯ
В результате изучения курса геометрии 7 класса обучающиеся должны:
знать/понимать
существо понятия математического доказательства; примеры доказательств;
существо понятия алгоритма; примеры алгоритмов;
как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
как потребности практики привели математическую науку к необходимости расширения понятия числа;
вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;
смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;
уметь
пользоваться языком геометрии для описания предметов окружающего мира;
распознавать геометрические фигуры, различать их взаимное расположение;
изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;
распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;
в простейших случаях строить сечения и развертки пространственных тел;
проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;
вычислять значения геометрических величин (длин, углов, площадей, объемов), в том числе: для углов от 0 до 180° определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;
решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;
проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
решать простейшие планиметрические задачи в пространстве;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
описания реальных ситуаций на языке геометрии;
расчетов, включающих простейшие тригонометрические формулы;
решения геометрических задач с использованием тригонометрии
решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);
построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).
Контрольно-измерительные материалы
Контрольная работа №1 «Измерение отрезков и углов»
Вариант 1
1. Три точки В,С и D лежат на одной прямой. Известно, что ВD = 17 см, DС = 25 см. Какой может быть длина отрезка ВС?
2. Сумма вертикальных углов МОЕ и DОС, образованных при пересечении прямых МС и DЕ, равна 204о. Найдите угол МОD.
3. С помощью транспортира начертите угол, равный 78о, и проведите биссектрису смежного с ним угла.
Вариант 2
1. Три точки M, N, K лежат на одной прямой. Известно, что MN = 15 см, NK = 18 см. Какой может быть длина отрезка MK?
2. Сумма вертикальных углов AOB и COD, образованных при пересечении прямых AD и BC, равна 108о. Найдите угол BОD.
3. С помощью транспортира начертите угол, равный 132о, и проведите биссектрису одного из смежных с ним углов.
Контрольная работа №2 «Треугольники»
Вариант 1
1. На рисунке отрезки АВ и СD имеют общую середину О. Докажите, что [pic] .
[pic] [pic]
2. Луч АD – биссектриса угла А. на сторонах угла А отмечены точки В и С так, что [pic] . Докажите, что АВ = АС.
3. Начертите равнобедренный треугольник АВС с основанием ВС. С помощью циркуля и линейки проведите медиану ВВ1 к боковой стороне АС.
Вариант 2
1. На рисунке отрезки МЕ и РК точкой D делятся пополам . Докажите, что [pic] .
[pic]
[pic]
2. На сторонах угла D отмечены точки М и К так, что DМ = DК. Точка Р лежит внутри угла D, и РК = РМ. Докажите, что луч DР – биссектриса угла МDК.
3. Начертите равнобедренный треугольник АВС с основанием АС и острым углом В. С помощью циркуля и линейки проведите высоту из вершины угла А.
Контрольная работа №3 «Параллельные прямые»
Вариант 1
1. Отрезки EF и PQ пересекаются в их середине М. Докажите, что РЕ║QF.
2. Отрезок DM – биссектриса треугольника СDЕ. Через точку М проведена прямая, параллельная стороне СD и пересекающая сторону DЕ в точке N. Найдите углы треугольника DMN, если [pic] .
Вариант 2
1. Отрезки MN и EF пересекаются в их середине Р. Докажите, что ЕN║МF.
2. Отрезок АD – биссектриса треугольника АВС. Через точку D проведена прямая, параллельная стороне АВ и пересекающая сторону АС в точке F. Найдите углы треугольника АDF, если [pic] .
Контрольная работа №4 «Соотношения между сторонами и углами треугольника»
Вариант 1
На рисунке [pic] , [pic] , АC = 12 см. Найдите сторону АВ треугольника АВС.
[pic]
2. В треугольнике СDЕ точка М лежит на стороне СЕ, причем угол СМD острый. Докажите, что DЕ > DМ.
3. Периметр равнобедренного тупоугольного треугольника равен 45 см, а одна из его сторон больше другой на 9 см. Найдите стороны треугольника.
Вариант 2
Н [pic] а рисунке [pic] , [pic] , BC = 9 см. Найдите сторону АC треугольника АВС.
2. В треугольнике MNP точка K лежит на стороне MN, причем угол NKP острый. Докажите, что KP < МP.
3. Одна из сторон тупоугольного равнобедренного треугольника на 17 см меньше другой. Найдите стороны этого треугольника, если его периметр равен 77 см.
Контрольная работа №5 «Прямоугольный треугольник.
Построение треугольника по трем элементам»
Вариант 1
1. В остроугольном треугольнике MNP биссектриса угла М пересекает высоту NK в точке О, причем ОК = 9 см. Найдите расстояние от точки О до прямой МN.
2. Постройте прямоугольный треугольник по гипотенузе и острому углу.
3. С помощью циркуля и линейки постройте угол, равный 150о.
Вариант 2
1. В прямоугольном треугольнике DCE c прямым углом С проведена биссектриса EF, причем FC = 13 см. Найдите расстояние от точки F до прямой DE.
2. Постройте прямоугольный треугольник по катету и прилежащему к нему острому углу.
3. С помощью циркуля и линейки постройте угол, равный 105о.
Итоговая контрольная работа
Вариант 1
1. В равнобедренном треугольнике АВС с основанием АС на медиане ВD отмечена точка К, а на сторонах АВ и ВС – точки М и N соответственно. Известно, что [pic]
а) Найдите угол BNK.
б) Докажите, что прямые MN и ВК взаимно перпендикулярны.
2. На сторонах АВ, ВС и СА треугольника АВС отмечены точки D, E и F соответственно. Известно, что [pic]
а) Найдите угол DFE.
б) Докажите, что прямые АВ и ЕF пересекаются.
3. В прямоугольном треугольнике АВС катет АВ равен 3 см, угол С равен 150. На катете АС отмечена точка D так, что [pic] .
а) Найдите длину отрезка ВD.
б) Докажите, что ВC < 12 cм.
Вариант 2
1. В треугольнике АВС угол А равен 55о. Внутри треугольника отмечена точка О так, что [pic] и АО = ОС.
а) Найдите угол АСВ.
б) Докажите, что прямая ВО является серединным перпендикуляром к стороне АС.
2. На прямой последовательно отложены отрезки АВ, ВС и СD.Точки Е и F расположены по разные стороны от этой прямой, причем [pic]
Докажите, что:
а) прямые ВЕ и CF параллельны;
б) прямые ВF и СЕ пересекаются.
3. В треугольнике АВС [pic] На стороне FС отмечена точка D так, что [pic] .
а) Найдите длину отрезка АD.
б) Докажите, что периметр треугольника АВС меньше 10 см.