ИТОГОВОЕ ПОВТОРЕНИЕ ПО АЛГЕБРЕ В 7 КЛАССЕ
Тема: Решение уравнений
Подобранные уравнения могут быть использованы как при изучении темы, так и при повторении или при подведении итогов. Уравнения отличаются своей тематикой и сложностью. Таким образом их применение возможно при дифференцированном подходе к каждому ученику. Есть уравнения, которые можно использовать в классах с углубленным изучением математики, а так же при подготовке учащихся к экзаменам.
|2x - 1| = 3
3a + bx = 12 – 3a
7(x – 4) + 3 = 3(2x - 7) + x - 8
-
3 – 4x = -5
2,5(x - 4) + 2 = 0,5x
(-6x + 1) : 4 = 2x : 3
|x + 4| = 9
4b – ax + 12 = 0
-12x + 4(x - 3) = -8x - 12
-
12 – 3x = 7
-5x + 12(x - 1) = 2
(8 - x) : 4 = (x - 3) : 3
|2x - 3| = 5
4(a – 2x) + b = 6
10(x - 3) + 1 = 5(2x + 3)
-
35(x + 1) = -14
-12(2 - x) = -6x + 2
(x + 3) : 4 = (2x - 1) : 3
|3x + 1| = 4
a(b – 3x) + 2 = 23
12(x + 2) – 2,1 = 2(6x + 12) - 3x
-
14 – (x – 2) = 23
-(x – 3) + 2(3 - x) = 5
-2(x + 1) : 3 = (3x - 1) : 2
|2x - 5| = 3
b – ax + 12 = ax
2,1x + 0,3(7 – x ) = 2,1
-
32x + (2 – 3x) = 5
-4x + 21 + (3 - x) = 12
x : 4 = 2x : 3
|x - 3| = 12
3b – a(x - 3) = 2
-2(x + 21) – 3(x - 14) = -5x
-
34(x - 2) = 2
-2(x - 3) + (4 - x) = 12
(13 - x) : 12 = 3(x - 2) : 5
|2x - 13| = 1
a(3x - b) = 12
-2(x + 21) – 3(x - 4) = -5(x +6)
-
3x – 12 + x = 4
23x – 2(3x - 4) = 12
(3x - 1) : 2 = 2(x + 2) : 3
|3x - 13| = 2
3xa – 2b = 3a - 4
2,1(x – 0,3) + 0,7x = 2,8x
-
11(x - 3) = 33
23(x + 2) – (2x - 1) = 1
-x : 4 = (3 – 2x) : 5
|5x + 1| = 4
-b(x - 3) = a
2,4(x – 0,01) = 24x : 10
-
3x + 12 + x = -4
-(3 - x) + 2(x - 3) = 3
(x – 3,4) : 3 = (2x - 3) :2
|x + 12| = 1
(x - a) :b = 12
-11(x - 2) + (2x - 3) = -9x + 19
-
2(x - 3) + 4 = 1
2(3x - 2) – (3 - x) = 5
(3 - x) : 3 = (2x - 1) : 2
|2x - 7| = 3
xb + a(x - 2) = 0
-11(x - 2) + (2x - 3) = -9(x + 2)
-
-3x + 2 = 17
-2(x - 3) + 3(2 - x) =1
2(x - 1) :3 = 3(2x + 1) : 2
|3x - 1| = 3
b + 2(ax - 4) = 2
-1,7(x +2) – 0,3x = 2(2 - x)
-
12 – (x - 2) = 3
-(2x - 1) – 2(5 – 3x) = 0
-(x - 2) : 5 = 2x : 3
|5x - 1| = 2
ax – 4bx + 12 = 9
-11(x - 2) + 2(3 – 2x) + 15x = 0
-
3x + 12 = 3
5(x - 2) + 2(3 - x) = 12
(4x - 3) : 3 = 2x : 5
|x + 1| = 1
bx – 2ax + 5 = 2bx
2(x - 23) + 3(15 - x) = -(x + 1)
-
43(x - 2) = 12
12(x - 2) + (-4 + x) = 0
-(0,6 + x) : 25 = x : 3
|x – 2| = 3
a(x - b) = 12
2(x - 23) + 3(15 - x) = -x + 1
-
4x – 21 = 4
-(2 - x) + 3(2x - 3) = 2
3 : x = 2 : (3 - x)
|21x + 2| = 23
a : (3x - b) = 21
2,1(2 - x) + 1,4(1,5x – 3) = 0
-
3 : (2x - 1) = 3
2(3 - x) – 21(x - 1) = 0
(2 – 3x) : 2 = (3 – 2x) : 3
|x + 3| = 12
b – 2ax + 4 = 0
2,1(2 – x) + 1,4(1,5x - 3) = 2
-
2 : (3 – 2x) = 1
-2(x - 12) – 3(x + 1) = 1
-(-3x -1) : 2 = x : 2
|3x - 2| = 4
(2ax - 3) : b = 1
21(2x - 1) = 14(3x - 4)
-
3(5x + 2) = 12
-7(2 - x) + 2(x - 3) = 0
(x - 2) : 5 = x : 3
|x - 6| = 3
bx – 4a = 8
21(x - 3) + 20 = 7(3x - 2)
-
21x – 3 = 12
7(2x - 1) + (4 - x) = 2x
(21x + 1) : 3 = 2x
|21x - 1| = 20
b : (ax – 5) + 1 = 0
7(2x - 3) + 1 = 2(7x - 10)
-
21(x - 3) = 12
2(7x + 1) – (x - 4) = 0
21 : x = 7 : (x - 3)
|21x + 1| = 20
2(bx – 4a) + 8x = 0
2(8x - 1) – 8(2x - 3) = 13
-
21(3 – x) = 12
3x – 2(2 - x) = 7(x - 2)
12 : (1 - x) = 4 : (3x - 1)
|x + 11| = 1
2b – 2(a + 3x) = 2b
8(2x - 1) – 2(8x – 3) = 2
-
21 : (x - 3) = 7
-2(x - 2) + 3(2x – 1) = 0
(3 + x) : 2 = (3x - 1) : 3
|7x - 1| = 6
3(ax - 1) = 2b
8(2x - 1) – 2(8x - 3) = -2
-
7(3x + 1) = -14
-12(2x - 1) – (x – 1) = x
(-12x + 1) : 2 = 3x
|7x + 3| = 4
2(x – 3a) = 4b
11(2x - 3) = 5(4x - 6) + 2x
-
3x + 12 – 2x = 11
-2(x - 2) – (3x + 1) = 3
3x : 2 = (3 + x) : 4
|x - 23| = 22
3(a + x) = 2b
9(2x - 1) + 2 = 2(9x - 3) - 1
-
5x – 2 = 13
-3(4 - x) + (2 – x) = 3x
(3x + 2) : 4 = (x + 3) : 3
|2x - 5| = 5
3bx + 2a = 4a
9(2x - 1) + 2 = 2(9x - 3)
-
5(x - 2) = 15
-(2x - 1) + 2(2 - x) = x
(x + 2) : 3 = x : 2
|2x + 5| = 5
ax – 4b = 2
3(x + 2) = 2(1,5x + 4)