Элективный курс Избранные вопросы математики

Автор публикации:

Дата публикации:

Краткое описание: ...


Элективный курс

«Избранные вопросы математики»


Учитель первой квалификационный категории: Максименко Светлана Александровна, МАОУ «Лицей № 28 имнеи Н.А.Рябова» г.Тамбова.


ПОЯСНИТЕЛЬНАЯ ЗАПИСКА


Элективный курс «Избранные вопросы математики» соответствует целям и задачам обучения в старшей школе. Основная функция данного элективного курса – дополнительная подготовка учащихся 10 класса к государственной итоговой аттестации в форме ЕГЭ, к продолжению образования.

Содержание рабочей программы элективного курса соответствует основному курсу математики для средней (полной) школы и федеральному компоненту Государственного образовательного стандарта по математике; развивает базовый курс математики на старшей ступени общего образования, реализует принцип дополнения изучаемого материала на уроках алгебры и начал анализа системой упражнений, которые углубляют и расширяют школьный курс, и одновременно обеспечивает преемственность в знаниях и умениях учащихся основного курса математики 10 класса, что способствует расширению и углублению базового общеобразовательного курса алгебры и начал анализа и курса геометрии.

Данный элективный курс направлен на формирование умений и способов деятельности, связанных с решением задач повышенного и высокого уровня сложности, получение дополнительных знаний по математике, интегрирующих усвоенные знания в систему.

Рабочая программа элективного курса отвечает требованиям обучения на старшей ступени, направлена на реализацию личностно ориентированного обучения, основана на деятельностном подходе к обучению, предусматривает овладение учащимися способами деятельности, методами и приемами решения математических задач. Включение уравнений и неравенств нестандартных типов, комбинированных уравнений и неравенств, текстовых задач разных типов, рассмотрение методов и приемов их решений отвечают назначению элективного курса – расширению и углублению содержания курса математики с целью подготовки учащихся 10 класса к государственной итоговой аттестации в форме ЕГЭ.

Содержание структурировано по блочно-модульному принципу, представлено в законченных самостоятельных модулях по каждому типу задач и методам их решения и соответствует перечню контролируемых вопросов в контрольно-измерительных материалах на ЕГЭ.

На учебных занятиях элективного курса используются активные методы обучения, предусматривается самостоятельная работа по овладению способами деятельности, методами и приемами решения математических задач. Рабочая программа данного курса направлена на повышение уровня математической культуры старшеклассников.

С целью контроля и проверки усвоения учебного материала проводятся длительные домашние контрольные работы по каждому блоку, семинары с целью обобщения и систематизации. В учебно-тематическом плане определены виды контроля по каждому блоку учебного материала в различных формах (домашние контрольные работы на длительное время, обобщающие семинары).

Рабочая программа элективного курса «Избранные вопросы математики» рассчитана на 35 часов, 1 час в неделю.


Цели

Изучение математики на ступени основного общего образования направлено на достижение следующих ц е л е й:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.

Цель курса


Основная цель курса:

  • дополнительная подготовка учащихся 10 класса к государственной итоговой аттестации в форме ЕГЭ, к продолжению образования.

Курс призван помочь учащимся с любой степенью подготовленности в овладении способами деятельности, методами и приемами решения математических задач, повысить уровень математической культуры, способствует развитию познавательных интересов, мышления учащихся, умению оценить свой потенциал для дальнейшего обучения в профильной школе.

Результаты обучения

Результаты обучения представлены в Требованиях к уровню подготовки, задающих систему итоговых результатов обучения, которые должны быть достигнуты всеми учащимися, оканчивающими основную школу, и достижение которых является обязательным условием положительной аттестации ученика за курс основной школы. Эти требования структурированы по трем компонентам: «знать/понимать», «уметь», «использовать приобретенные знания и умения в практической деятельности и повседневной жизни».



Методическое обеспечение

В процессе изучения материала используются как традиционные формы обучения, так и самообразование, саморазвитие учащихся посредством самостоятельной работы с информационным и методическим материалом.

Занятия включают в себя теоретическую и практическую части, в зависимости от целесообразности. Основные формы проведения занятий: беседа, дискуссия, консультация, практическое занятие, защита проекта. Особое значение отводится самостоятельной работе учащихся, при которой учитель на разных этапах изучения темы выступает в разных ролях, чётко контролируя и направляя работу учащихся.

Предполагаются следующие формы организации обучения: индивидуальная, групповая, коллективная, взаимное обучение, самообучение.

Средства обучения: дидактические материалы, творческие задания для самостоятельной работы, мультимедийные средства, справочная литература.

Технологии обучения: информационные, проектные, исследовательские. Занятия носят проблемный характер. Предполагаются ответы на вопросы в процессе дискуссии, поиск информации по смежным областям знаний.


Контроль результативности изучения учащимися программы

Эффективность обучения отслеживается следующими формами контроля: самостоятельная работа, практикумы, тестирование.

Основные формы итогового контроля:

Практикумы по темам «Методы решения алгебраических уравнений и неравенств», «Многочлены», «Множества. Числовые неравенства»; тестирование по темам «Функции и графики», «Методы решения тригонометрических уравнений и неравенств».

Показателем эффективности следует считать повышающийся интерес к математике, творческую активность учащихся


СОДЕРЖАНИЕ ПРОГРАММЫ


Тема 1. Преобразование алгебраических выражений

Алгебраическое выражение. Тождество. Тождественные преобразования алгебраических выражений. Различные способы тождественных преобразований.


Тема 2. Методы решения алгебраических уравнений и неравенств

Уравнение. Равносильные уравнения. Свойства равносильных уравнений. Приемы решения уравнений. Уравнения, содержащие модуль. Приемы и методы решения уравнений и неравенств, содержащих модуль.

Решение уравнений и неравенств, содержащих модуль и иррациональность.


Тема 3. Функции и графики

Функции. Способы задания функции. Свойства функции. График функции.

Линейная функция, её свойства, график (обобщение).

Тригонометрические функции, их свойства и графики.

Дробно-рациональные функции, их свойства и графики.


Тема 4. Многочлены

Действия над многочленами. Корни многочлена.

Разложение многочлена на множители.

Четность многочлена. Рациональные дроби.

Представление рациональных дробей в виде суммы элементарных.

Алгоритм Евклида.

Теорема Безу. Применение теоремы Безу для решения уравнений высших степеней.

Разложение на множители методом неопределенных коэффициентов.

Методы решения уравнений с целыми коэффициентами.


Тема 5. Множества. Числовые неравенства

Множества и условия. Круги Эйлера.

Множества точек плоскости, которые задаются уравнениями и неравенствами.

Числовые неравенства, свойства числовых неравенств. Неравенства, содержащие модуль, методы решения. Неравенства, содержащие параметр, методы решения. Решение неравенств методом интервалов.

Тождества.


Тема 6. Методы решения тригонометрических уравнений и неравенств

Формулы тригонометрии. Простейшие тригонометрические уравнения и неравенства. Методы их решения.

Период тригонометрического уравнения. Объединение серий решения тригонометрического уравнения, рациональная запись ответа.

Арк-функции в нестандартных тригонометрических уравнениях.

Тригонометрические уравнения в задачах ЕГЭ. Преобразование тригонометрических выражений.

Тригонометрические неравенства. Применение свойств тригонометрических функций при решении уравнений и неравенств.

Тригонометрия в контрольно-измерительных материалах ЕГЭ.


Тема 7. Текстовые задачи. Основные типы текстовых задач. Методы решения

Приемы решения текстовых задач на «работу», «движение», «проценты», «смеси», «концентрацию», «пропорциональное деление». Задачи в контрольно-измерительных материалах ЕГЭ.


Тема 8. Производная. Применение производной

Применение производной для исследования свойств функции, построение графика функции.

Наибольшее и наименьшее значения функции, решение задач.

Применение методов элементарной математики и производной к исследованию свойств функции и построению её графика.

Решение задач с применением производной, уравнений и неравенств.


Тема 9. Квадратный трехчлен с параметром

Решение математических задач на квадратный трехчлен с параметром.


ТЕМАТИЧЕСКИЙ ПЛАН


п/п

Наименование темы


Общее кол-во

часов

В том числе


теор.

занятия

практ.

занятия

1

Преобразование алгебраических выражений

2

2

-

2

Методы решения алгебраических уравнений и неравенств

3

2

1

3

Функции и графики

6

4

2

4

Многочлены

6

4

2

5

Множества. Числовые неравенства

6

4

2

6

Методы решения тригонометрических уравнений и неравенств

6

4

2

7

Текстовые задачи. Основные типы текстовых задач. Методы решения

2

1

1

8

Производная. Применение производной

1

1

-

9

Квадратный трехчлен с параметром

3

2

1


ИТОГО:

35

24

11

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ОБУЧАЮЩИХСЯ


В результате изучения курса ученик должен


знать/понимать

  • определение модуля числа, свойства модуля, геометрический смысл модуля;

  • алгоритм решения линейных, квадратных, дробно-рациональных уравнений, систем уравнений, содержащих модуль;

  • алгоритм решения линейных, квадратных, дробно-рациональных неравенств, систем неравенств, содержащих модуль;

  • приемы построения графиков линейных, квадратичных, дробно-рациональных, тригонометрических; логарифмической и показательной функций;

  • алгоритм Евклида, теорему Безу, метод неопределенных коэффициентов;

  • формулы тригонометрии;

  • понятие арк-функции;

  • свойства тригонометрических функций;

  • методы решения тригонометрических уравнений и неравенств и их систем;

  • свойства логарифмической и показательной функций;

  • методы решения логарифмических и показательных уравнений, неравенств и их систем;

  • понятие многочлена;

  • приемы разложения многочленов на множители;

  • понятие параметра;

  • поиски решений уравнений, неравенств с параметрами и их систем;

  • алгоритм аналитического решения простейших уравнений и неравенств с параметрами;

  • методы решения геометрических задач;

  • приемы решения текстовых задач на «работу», «движение», «проценты», «смеси», «концентрацию», «пропорциональное деление»;

  • понятие производной;

  • понятие наибольшего и наименьшего значения функции;


уметь

  • точно и грамотно формулировать теоретические положения и излагать собственные рассуждения в ходе решения заданий;

  • выполнять тождественные преобразования алгебраических выражений и тригонометрических выражений;

  • решать уравнения, неравенства с модулем и их системы;

  • строить графики линейных, квадратичных, дробно-рациональных, тригонометрических; логарифмической и показательной функций;

  • выполнять действия с многочленами, находить корни многочлена;

  • выполнять преобразования тригонометрических выражений, используя формулы;

  • объяснять понятие параметра;

  • искать решения уравнений, неравенств с параметрами и их систем;

  • аналитически решать простейшие уравнений и неравенства с параметрами;

  • решать текстовые задачи на «работу», «движение», «проценты», «смеси», «концентрацию», «пропорциональное деление»;


использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения тождественных преобразований выражений, содержащих знак модуля;

  • решения линейных, квадратных, дробно-рациональных уравнений вида: f|x|= a; |f(x)|= a; |f(x)|= g(x); |f(x)|= |g(x)|;

  • решения уравнений, содержащих несколько модулей; уравнений с «двойным» модулем;

  • решения системы уравнений, содержащих модуль;

  • решения линейных, квадратных, дробно-рациональных неравенств вида: f|x| > a; |f(x)| ≤ a; |f(x)| ≤ g(x); |f(x)| ≤ |g(x)|; |f(x)| > g(x);

  • решения неравенств, содержащих модуль в модуле;

  • решения систем неравенств, содержащих модуль;

  • построения графиков линейных, квадратичных, дробно-рациональных функций содержащих модуль;

  • поиска решения уравнений, неравенств с параметрами и их систем;

  • аналитического решения простейших уравнений и неравенств с параметрами;

  • описания свойств квадратичной функции;

  • построения «каркаса» квадратичной функции;

  • нахождения соотношения между корнями квадратного уравнения.



Учебно-методическое обеспечение и материально- техническое обеспечение учебного процесса


Рабочая программа составлена на основе федерального образовательного стандарта «ФГОС. Старшая школа». Данная рабочая программа ориентирована на учителей математики, работающих в 10 классах по УМК А.Г.Мордковича (профильный уровень).




Литература для учителя:

  1. Башмаков М.И. Уравнения и неравенства. М., 1983.

  2. Гомонов С.А . Замечательные неравенства. Их обоснование и применение./ Методические рекомендации к элективному курсу/ Дрофа. 2007.

  3. Горнштейн П.И., Полонский В.Т., Якир М.С. Задачи с параметрами. Москва – Харьков: “Илекса” “Гимназия”, 1999.

  4. Дидактические материалы по алгебре и началам анализа для 10 класса общеобразовательных учреждений/ М.И. Шабунин, М.В. Ткачева, Н.Е. Федорова, Р.Г. Газарян – М.: Просвещение, 2008.

  5. Закон РФ “ Об Образовании”.

  6. Локоть В.В. Задачи с параметрами. Показательные и логарифмические уравнения, неравенства, системы. М.: АРКТИ, 2005

  7. Примерная программа по математике основного (общего) образования.

  8. Романова Т.Е., Романов П.Ю. Задания с параметром: Методическое пособие.- МГПИ, 1996.

  9. Фальке Л.Я., Лисничук Н.Н. и др. Изучение сложных тем курса алгебры в средней школе. М.: “Илекса”, 2006.

  10. Федеральный государственный образовательный стандарт основного общего образования по математике

  11. ЕГЭ 2014. Математика. ЕГЭ. 3000 задач с ответами по математике. Все задания группы В. Под ред. Семенова А.Л., Ященко И.В.

  12. ЕГЭ 2014. Математика. Задачи с параметрами при подготовке к ЕГЭ. Высоцкий В.С.

  13. ЕГЭ 2014. Математика. Отличник ЕГЭ. Решение сложных задач. Панферов B.C., Сергеев И.Н. М.: Интеллект-Центр, 2014.

  14. ЕГЭ 2014. Репетитор. Математика. Эффективная методика. Лаппо Л.Д., Попов М.А. М.: Экзамен, 2014.

  15. ЕГЭ 2014. Математика. Учимся решать задачи с параметром. Подготовка к ЕГЭ: задание С5. Иванов С.О. и др. Под ред. Лысенко Ф.Ф., Кулабухова С.Ю. Ростов н/Д: Легион-М, 2014.

  16. ЕГЭ 2014. Математика. Решение заданий типа С1. Корянов А.Г., Прокофьев А.А. Тригонометрические уравнения: методы решений и отбор корней. [link]


Литература для учащихся

  1. Галицкий М. Л. (и др.). Сборник задач по алгебре для 8-9 классов учебное пособие для учащихся школ и классов с углубленным изучением математики. М.: Просвещение, 1999.

  2. Горнштейн, В.Б. Полонский, М.С. Якир. Задачи с параметрами. 3-е издание, дополненное и переработанное. - М.: Илекса, Харьков: Гимназия, 2005, - 328 с.

  3. Макарычев Ю. Н. Алгебра: Дополнительные главы к школьному учебнику. 9 класс. Учебное пособие для учащихся школ и классов с углубленным изучением математики. М.: Просвещение, 2000.

  4. Сборник задач по математике для поступающих во ВТУЗы. Под ред. Сканави. – М:1996.

  5. Система тренировочных задач и упражнений по математике/Симонов А.Я. и др. – М.: Просвещение,1991г.

  6. Шарыгин И.Ф. Математика для поступающих в ВУЗы: Учеб. пособие – М.: «Дрофа»,1997.

  7. Шахмейстер А.Х. Уравнения и неравенства с параметром. – СПб.: «ЧеРо-на-Неве»,2004.



Демонстрационные пособия

Наглядные пособия, в том числе и комплекс интерактивных наглядных пособий «Наглядная математика».

Технические средства обучения (средства ИКТ)

Экран навесной. Медиапроектор. Компьютер. Принтер.