Рабочая программа по математике .9 класс.Алгебра-Ю.Н. Макарычев,Геометрия-Л.С. Атанасян.

Автор публикации:

Дата публикации:

Краткое описание: ...







РАБОЧАЯ ПРОГРАММА


по учебному предмету « Математика»

9 класс

(по учебнику Макарычев Ю.Н. и Атанасяна Л.С.)


.









2016-2017 учебный год


Составила: учитель математики Галиуллина Р.Ф.











Пояснительная записка






Рабочая программа по математике составлена на основе федерального компонента государственного стандарта основного общего образования.

Данная рабочая программа ориентирована на учащихся 9 классов и реализуется на основе следующих документов:

  1. Т.Б. Васильева, И.Н. Иванова. Примерная программа основного (полного) общего образования по математике. Сборник нормативно-правовых документов и методических материалов – М: Вентана-Граф,2011.

  2. Т.А Бурмистрова. Алгебра. Программы общеобразовательных учреждений, 7-9 классы. «Просвещение», 2016 г.

  3. Т.А Бурмистрова. Геометрия 7-9 классы. Программы общеобразовательных учреждений, 7-9 классы. «Просвещение», 2008 г.

  4. Государственный стандарт начального общего, основного общего и среднего (полного) общего образования. Приказ Министерства образования РФ от 05.03.2004 г № 1089.

В ходе освоения содержания курса учащиеся получают возможность:

  1. развить представления о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;

  2. овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;

  3. изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;

  4. развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;

  5. получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

  6. развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

  7. сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.

Изучение математики на ступени основного общего образования направлено на достижение следующих целей:

  1. овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  2. интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;

  3. формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  4. воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.



Основные развивающие и воспитательные цели

 Развитие:

  1. Ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

  2. Математической речи;

  3.  Сенсорной сферы; двигательной моторики;

  4.  Внимания; памяти;

  5.  Навыков само и взаимопроверки.

Формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов.

 Воспитание:

  1. Культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;

  2. Волевых качеств;

  3. Коммуникабельности;

  4. Ответственности.


Место предмета в федеральном базисном учебном плане

Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение математики на ступени основного общего образования отводится не менее 875 ч из расчета 5 ч в неделю с V по IX класс. Математика изучается в 9 класс 5 ч в неделю, всего 170 ч: 3 часа в неделю алгебра, 2 часа в неделю геометрия.

Структура изучения математики выстраивается с чередованием учебного материала по алгебре и геометрии.

В настоящей рабочей программе изменено соотношение часов на изучение тем, добавлены темы элементов статистики (подробнее расписано в Содержании тем учебного курса).

Общеучебные умения, навыки и способы деятельности.

В ходе преподавания математики в основной школе, работы над формированием у учащихся перечисленных в программе знаний и умений, следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;

исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;

проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;

поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.

СОДЕРЖАНИЕ ТЕМ УЧЕБНОГО КУРСА


Алгебра 9 класс


1. Квадратичная функция (23ч)

Функция. Возрастание и убывание функции. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Решение задач путем выделения квадрата двучлена из квадратного трехчлена. Функция y=ax2+bx, её свойства, график. Простейшие преобразования графиков функций. Решение неравенств второй степени с одной переменной. Решение рациональных неравенств методом интервалов.

 Цель – выработать умение строить график квадратичной функции и применять графические представления для решения неравенств второй степени с одной переменной.

Знать основные свойства функций, уметь находить промежутки знакопостоянства, возрастания, убывания функций

Уметь находить область определения и область значений функции, читать график функции

Уметь решать квадратные уравнения, определять знаки корней

Уметь выполнять разложение квадратного трехчлена на множители

Уметь строить график функции у=ах2 , выполнять простейшие преобразованияграфиков функций

Уметь строить график квадратичной функции, выполнять простейшие преобразования графиков функций

Уметь строить график квадратичной функции» находить по графику нули функции, промежутки, где функция принимает положительные и отрицательные значения.

Уметь построить график функции y=ax2 и применять её свойства. Уметь построить график функции y=ax2 + bx + с и применять её свойства

Уметь находить токи пересечения графика Квадратичной функции с осями координат. Уметь разложить квадратный трёхчлен на множители.

Уметь решать квадратное уравнение.

Уметь решать квадратное неравенство алгебраическим способом. Уметь решать квадратное неравенство с помощью графика квадратичной функции

Уметь решать квадратное неравенство методом интервалов. Уметь находить множество значений квадратичной функции.

Уметь решать неравенство ах2 +вх+с≥0 на основе свойств квадратичной функции


Степенная функция. Корень n-й степени

Четная и нечетная функции. Функция y=xn, Определение корня n-й степени.

 Цель – ввести понятие корня n-й степени.

Знать определение и свойства четной и нечетной функций

Уметь строить график функции у=хn , знать свойства степенной функции с натуральным показателем, уметь решать уравнения хn=а при: а) четных и б)нечетных значениях n.

Знать определение корня n- й степени, при каких значениях а имеет смысл выражение [pic] .

Уметь выполнять простейшие преобразования и вычисления выражений, содержащих корни, применяя изученные свойства арифметического корня n-й степени.

Знать, что степень с основанием, равным 0 определяется только для положительного дробного показателя и знать, что степени с дробным показателем не зависят от способа записи r в виде дроби.

Знать свойства степеней с рациональным показателем, уметь выполнять простейшие преобразования выражений, содержащих степени с дробным показателем.

Уметь выполнять преобразования выражений, содержащих степени с дробным показателем.


2. Уравнения и системы уравнений (32 ч)

Целое уравнение и его корни. Решение уравнений третьей и четвертой степени с одним неизвестным с помощью разложения на множители и введения вспомогательной переменной.

Уравнение с двумя переменными и его график. Уравнение окружности. Решение систем, содержащих одно уравнение первой, а другое второй степени. Решение задач методом составления систем. Решение систем двух уравнений второй степени с двумя переменными.

Цель – выработать умение решать простейшие системы, содержащие уравнения второй степени с двумя переменными, и решать текстовые задачи с помощью составления таких систем.

Знать методы решения уравнений: а) разложение на множители; б) введение новой переменной; в) графический способ.

Уметь решать целые уравнения методом введения новой переменной

Уметь решать системы 2 уравнений с 2 переменными графическим способом

Уметь решать уравнения с 2 переменными способом подстановки и сложения

Уметь решать задачи «на работу», «на движение» и другие составлением систем уравнений.

3. Прогрессии (15 ч)

Арифметическая и геометрическая прогрессии. Формулы n-го члена и суммы n первых членов прогрессии.

Цель – дать понятие об арифметической и геометрической прогрессиях как числовых последовательностях особого вида.

Добиться понимания терминов «член последовательности», «номер члена последовательности», «формула n –го члена арифметической прогрессии»

Знать формулу n –го члена арифметической прогрессии, свойства членов арифметической прогрессии, способы задания арифметической прогрессии

Уметь применять формулу суммы n –первых членов арифметической прогрессии при решении задач

Знать, какая последовательность является геометрической, уметь выявлять, является ли последовательность геометрической, если да, то находить q

Уметь вычислять любой член геометрической прогрессии по формуле, знать свойства членов геометрической прогрессии

Уметь применять формулу при решении стандартных задач

Уметь применять формулу S = [pic] при решении практических задач

Уметь находить разность арифметической прогрессии

Уметь находить сумму n первых членов арифметической прогрессии. Уметь находить

любой член геометрической прогрессии. Уметь находить сумму n первых членов геометрической прогрессии. Уметь решать задачи.


5. Элементы комбинаторики, статистики и теории вероятностей (13 ч)

Комбинаторные задачи. Перестановки, размещения, сочетания. Вероятность случайного события

Знать формулы числа перестановок, размещений, сочетаний и уметь пользоваться ими.

Уметь пользоваться формулой комбинаторики при вычислении вероятностей.

7. Повторение (19 ч)

Закрепление знаний, умений и навыков, полученных на уроках по данным темам (курс алгебры 9 класса).


СОДЕРЖАНИЕ ТЕМ УЧЕБНОГО КУРСА

ГЕОМЕТРИЯ

  1. Векторы (12 ч)

  2. Метод координат (11 ч).

Вектор. Длина (модуль) вектора. Координаты вектора. Равенство векторов. Операции над векторами: умножение на число, сложение, разложение, скалярное произведение. Угол между векторами. Простейшие задачи в координатах. Уравнение окружности, прямой.

  1. Соотношение между сторонами и углами треугольника. Скалярное произведение векторов. (15 ч)

Синус, косинус, тангенс угла. Соотношения между сторонами и углами треугольника. Скалярное произведение векторов.

3.Длина окружности и площадь круга (12 ч).

Многоугольники. Длина ломаной, периметр многоугольника. Выпуклые многоугольники. Сумма углов выпуклого многоугольника. Вписанные и описанные многоугольники. Правильные многоугольники.

Окружность и круг. Центр, радиус, диаметр. Дуга, хорда. Сектор, сегмент. Центральный, вписанный угол; величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности; равенство касательных, проведенных из одной точки. Метрические соотношения в окружности: свойства секущих, касательных, хорд. Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Вписанные и описанные четырехугольники. Вписанные и описанные окружности правильного многоугольника. Длина окружности. Площадь круга и площадь сектора.

4. Геометрические преобразования. Движения (9 ч).

Примеры движений фигур. Симметрия фигур. Осевая симметрия и параллельный перенос. Поворот и центральная симметрия. Понятие о гомотетии. Подобие фигур.

5.Начальные сведения из стереометрии (3 ч).

Предмет стереометрия. Многогранник. Призма. Параллелепипед. Цилиндр. Конус. Сфера и шар.

6. Повторение. (7 ч)





ТРЕБОВАНИЯ К УРОВНЮ
ПОДГОТОВКИ ВЫПУСКНИКОВ


В результате изучения математики ученик должен

знать/понимать [link]