Пояснительная записка по математике 6 класс

Автор публикации:

Дата публикации:

Краткое описание: ...


Пояснительная записка.


Рабочая программа учебного курса математики для 6 класса составлена на основе примерной программы основного общего образования по математике в соответствии с федеральным государственным образовательным стандартом основного общего образования.

Данная рабочая программа составлена для изучения математики по учебнику: Математика. учебник для 6 класса общеобразовательных учреждений / Н.Я. Виленкин. и др. М.: Мнемозина 2012.

Уровень рабочей программы базовый. Нормативные правовые документы, на основании которых разработана рабочая программа:

  • Федеральный закон от 29.12.2012 года № 273-ФЗ (ред. От 07 мая 2013 года) «Об образовании в Российской Федерации»

  • Федеральный государственный образовательный стандарт основного общего образования, утвержденный Приказом Министерства образования и науки Российской Федерации от 17.12.2010 № 1897 «Об утверждении и введении в действие федерального государственного образовательного стандарта основного общего образования»

  • Приказ Министерства образования и науки РФ от 19.12.2012 г. № 1067 «Об утверждении федеральных перечней учебников, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных учреждениях, реализующих образовательные программы общего образования и имеющих государственную аккредитацию, на 2013/2014 учебный год»

  • Основная общеобразовательная программа основного общего образования МКОУ «Покровская средняя общеобразовательная школа» на 2016- 2017 учебный год.

  • Учебный план МКОУ «Покровская средняя общеобразовательная школа» на 2016- 2017 учебный год.

Математика является одним из основных, системообразующих предметов школьного образования. Такое место математики среди школьных предметов обусловливает и её особую роль с точки зрения всестороннего развития личности учащихся. При этом когнитивная составляющая данного курса позволяет обеспечить как требуемый государственным стандартом необходимый уровень математической подготовки, так и повышенный уровень, являющийся достаточным для углубленного изучения предмета.

В основу настоящей программы положены педагогические и дидактические принципы вариативного развивающего образования, а так же современные дидактико-психологические тенденции, связанные с вариативным развивающим образованием и требованиями ФГОС. А так же идея гуманизации обучения, соответствующая современным представлениям о целях школьного образования и уделяющая особое внимание личности ученика, его интересам и способностям.

Общая характеристика учебного предмета


Настоящая программа по математике является логическим продолжением непрерывного курса математики общеобразовательной школы.

Изучение математики в основной школе направлено на достижение следующих целей:

в направлении личностного развития:

развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;

формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;

формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

развитие интереса к математическому творчеству и математических способностей;

в метапредметном направлении:

формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;

развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;

формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;

в предметном направлении:

овладение математическими знаниями и умениями, необходимыми для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения в повседневной жизни;

создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.

Курс математики 6 класса - важнейшее звено математического образования и развития школьников. На этом этапе заканчивается в основном обучение счёту на множестве рациональных чисел, формируется понятие переменной и даются первые знания о приёмах решения линейных уравнений, продолжается обучение решению текстовых задач, совершенствуются и обогащаются умения геометрических построений и измерений. Серьёзное внимание уделяется формированию умений рассуждать, делать простые доказательства, давать обоснования выполненных действий. При этом учащиеся постепенно осознают правила выполнения основных логических операций. Отрабатываются межпредметные и межкурсовые связи. Так, например, по биологии–темы «Столбчатые диаграммы», «Прямая и обратная пропорциональные зависимости», по географии - тема «Масштаб», по ИЗО, технологии – тема «Перпендикулярные и параллельные прямые», по химии – тема «Пропорции».

Описание места учебного предмета в учебном плане

Согласно федеральному базисному учебному плану на изучение математики в 6 классах отводится 170 часов из расчета 5 ч в неделю. Из школьного компонента образовательного учреждения выделяется 1 час в неделю на изучение математики в 6 классе, таким образом, количество часов в неделю увеличено до 6, значит всего 204 урока.Предусмотрены 12 контрольных работ. Из них: 10тематических, 1 исходная, 1 итоговая.

Планируемые результаты освоения учебного предмета.

Личностные, метапредметные и предметные результаты освоения учебного предмета «Математика»

Предлагаемый курс позволяет обеспечить формирование, как предметных умений, так и универсальных учебных действий школьников, а также способствует достижению определённых во ФГОС личностных результатов, которые в дальнейшем позволят учащимся применять полученные знания и умения для решения различных жизненных задач.

Личностными результатами изучения предмета «Математика» является формирование следующих умений и качеств:

  • независимость и критичность мышления;

  • воля и настойчивость в достижении цели.

Средством достижения этих результатов является:

  • система заданий учебников;

  • представленная в учебниках в явном виде организация материала по принципу минимакса;

  • использование совокупности технологий, ориентированных на развитие самостоятельности и критичности мышления: технология системно-деятельностного подхода в обучении, технология оценивания.

Метапредметными результатами изучения курса «Математика» является формирование универсальных учебных действий (УУД).

Регулятивные УУД:

  • самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебной деятельности, выбирать тему проекта;

  • выдвигать версии решения проблемы, осознавать (и интерпретировать в случае необходимости) конечный результат, выбирать средства достижения цели из предложенных, а также искать их самостоятельно;

  • составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);

  • работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно (в том числе и корректировать план);

  • в диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки.

Познавательные УУД:

  • проводить наблюдение и эксперимент под руководством учителя;

  • осуществлять расширенный поиск информации с использованием ресурсов библиотек и Интернета;

  • осуществлять выбор наиболее эффективных способов решения задач в зависимости от конкретных условий;

  • анализировать, сравнивать, классифицировать и обобщать факты и явления;

  • давать определение понятиям.

Средством формированияпознавательных УУД служат учебный материал и прежде всего продуктивные задания учебника.

Коммуникативные УУД:

  • самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);

  • отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами;

  • в дискуссии уметь выдвинуть контраргументы;

  • учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;

  • понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;



Ученик научится:

выполнять устно арифметические действия: сложение и вычитание двухзначных чисел и десятичных дробей с двумя знаками, умножение однозначных чисел, арифметические операции с обыкновенными дробями с однозначным знаменателем и числителем;

переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты – в виде дроби и дробь – в виде процентов;

выполнять арифметические действия с рациональными числами, находить значение числового выражения (целых и дробных);

округлять целые числа и десятичные дроби, выполнять оценку числовых выражений;

пользоваться основными единицами длины, массы, времени, скорости, площади, объема; переводить одни единицы измерения в другие;

решать текстовые задачи, в том числе связанные с отношениями и с пропорциональностью величин, дробями и процентами.

Использовать приобретенные знания и умения в практической деятельности повседневной жизни для:

решения несложных практических расчетных задач, в том числе с использованием справочных материалов, калькулятора;

устной прикидки и оценки результата вычислений;

интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.



Ученик получит возможность научиться:

переводить условия задачи на математический язык; использовать методы работы с математическими моделями;

осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления;

определять координаты точки и изображать числа точками на координатной плоскости;

составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления;

решать текстовые задачи алгебраическим методом.

Использовать приобретенные знания и умения в практической деятельности повседневной жизни для:

выполнение расчетов по формулам, составление формул, выражающих зависимости между реальными величинами.

пользоваться геометрическим языком для описания предметов окружающего мира;

распознавать геометрические фигуры, различать их взаимное расположение;

изображать геометрические фигуры, распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела;

в простейших случаях строить развертки пространственных тел;

вычислять площади, периметры, объемы простейших геометрических фигур (тел) по формулам.

решения несложных геометрических задач, связанных с нахождением изученных геометрических величин (используя при необходимости справочники и технические средства);

построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).

выполнять сбор информации в несложных случаях, представлять информацию в виде таблиц и диаграмм, в том числе с помощью компьютерных задач;

приводить примеры случайных событий, достоверных и невозможных событий; сравнивать шансы наступления событий;

выполнять перебор всех возможных вариантов для пересчета объектов или комбинаций, выделять комбинации, отвечающие заданным условиям;

строить речевые конструкции с использованием словосочетаний более вероятно, маловероятно и др.

Использовать приобретенные знания и умения в практической деятельности повседневной жизни для:

понимания вероятностного характера многих реальных зависимостей;

решения несложных вероятностных задач.



Содержание учебного предмета (204 часа)

Арифметика призвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами.

Алгебра нацелена на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности.

Геометрия – один из важнейших компонентов математического образования, необходимая для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

Элементы логики, комбинаторики, статистики и теории вероятностей необходимы, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчеты.

Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах. При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации, и закладываются основы вероятностного мышления.

1.Повторение за курс 5 класса – 6 ч.

2. Делимость чисел (23 ч).Делители и кратные числа. Общий делитель и общее кратное. Признаки делимости на 2, 3, 5, 10. Простые и составные числа. Разложение натурального числа на простые множители.

Основная цель — завершить изучение натуральных чисел, подготовить основу для освоения действий с обыкновенными дробями.

В данной теме завершается изучение вопросов, связанных с натуральными числами. Основное внимание должно быть уделено знакомству с понятиями «делитель» и «кратное», которые находят применение при сокращении обыкновенных дробей и при их приведении к общему знаменателю. Упражнения полезно выполнять с опорой на таблицу умножения прямым подбором. Понятия «наибольший общий делитель» и «наименьшее общее кратное» вместе с алгоритмами их нахождения можно не рассматривать.

Определенное внимание уделяется знакомству с признаками делимости, понятиям простого и составного чисел. При их изучении целесообразно формировать умения проводить простейшие умозаключения, обосновывая свои действия ссылками на определение, правило.

Учащиеся должны уметь разложить число на множители. Например, они должны понимать, что 36 = 6 • 6 = 4 • 9. Вопрос о разложении числа на простые множители не относится к числу обязательных.

3. Сложение и вычитание дробей с разными знаменателями (27 ч).Основное свойство дроби. Сокращение дробей. Приведение дробей к общему знаменателю. Понятие о наименьшем общем знаменателе нескольких дробей. Сравнение дробей. Сложение и вычитание дробей. Решение текстовых задач.

Основная цель — выработать прочные навыки преобразования дробей, сложения и вычитания дробей.

Одним из важнейших результатов обучения является усвоение основного свойства дроби, применяемого для преобразования дробей: сокращения, приведения к новому знаменателю. При этом рекомендуется излагать материал без опоры на понятия НОД и НОК. Умение приводить дроби к общему знаменателю используется для сравнения дробей.

При рассмотрении действий с дробями используются правила сложения и вычитания дробей с одинаковыми знаменателями, понятие смешанного числа. Важно обратить внимание на случай вычитания дроби из целого числа. Что касается сложения и вычитания смешанных чисел, которые не находят активного применения в последующем изучении курса, то учащиеся должны лишь получить представление о принципиальной возможности выполнения таких действий.

4. Умножение и деление обыкновенных дробей (32 ч).Умножение и деление обыкновенных дробей. Основные задачи на дроби.

Основная цель — выработать прочные навыки арифметических действий с обыкновенными дробями и решения основных задач на дроби.

В этой теме завершается работа над формированием навыков арифметических действий с обыкновенными дробями. Навыки должны быть достаточно прочными, чтобы учащиеся не испытывали затруднений в вычислениях с рациональными числами, чтобы алгоритмы действий с обыкновенными дробями могли стать в дальнейшем опорой для формирования умений выполнять действия с алгебраическими дробями.

Расширение аппарата действий с дробями позволяет решать текстовые задачи, в которых требуется найти дробь от числа или число по данному значению его дроби, выполняя соответственно умножение или деление на дробь.

  1. Отношения и пропорции (21 ч).Отношение. Пропорция. Основное свойство пропорции. Решение задач с помощью пропорции. Понятия о прямой и обратной пропорциональностях величин. Задачи на пропорции. Масштаб. Формулы длины окружности и площади круга. Шар.

Основная цель — сформировать понятия отношение двух величин, пропорции, прямой и обратной пропорциональностей величин.

Необходимо, чтобы учащиеся усвоили основное свойство пропорции, так как оно находит применение на уроках математики, химии, физики. В частности, достаточное внимание должно быть уделено решению с помощью пропорции задач на проценты.

Понятия о прямой и обратной пропорциональностях величин можно сформировать как обобщение нескольких конкретных примеров, подчеркнув при этом практическую значимость этих понятий, возможность их применения для упрощения решения соответствующих задач.

В данной теме даются представления о длине окружности и площади круга. Соответствующие формулы к обязательному материалу не относятся. Рассмотрение геометрических фигур завершается знакомством с шаром.

  1. Положительные и отрицательные числа (16 ч).Положительные и отрицательные числа. Противоположные числа. Модуль числа и его геометрический смысл.

Сравнение чисел. Целые числа. Изображение чисел на прямой. Координата точки.

Основная цель — расширить представления учащихся о числе путем введения отрицательных чисел.

Целесообразность введения отрицательных чисел показывается на содержательных примерах. Учащиеся должны научиться изображать положительные и отрицательные числа на координатной прямой, с тем, чтобы она могла служить наглядной основой для правил сравнения чисел, сложения и вычитания чисел, рассматриваемых в следующей теме.

Специальное внимание должно быть уделено усвоению вводимого здесь понятия модуля числа, прочное знание которого необходимо для формирования умения сравнивать отрицательные числа, а в дальнейшем для овладения и алгоритмами арифметических действий с положительными и отрицательными числами.

  1. Сложение и вычитание положительных и отрицательных чисел (13 ч).Сложение и вычитание положительных и отрицательных чисел.

Основная цель — выработать прочные навыки сложения и вычитания положительных и отрицательных чисел.

Действия с отрицательными числами вводятся на основе представлений об изменении величин: сложение и вычитание чисел иллюстрируется соответствующими перемещениями точек числовой оси. При изучении данной темы целенаправленно отрабатываются алгоритмы сложения и вычитания при выполнении действий с целыми и дробными числами.

  1. Умножение и деление положительных и отрицательных чисел (14 ч).Умножение и деление положительных и отрицательных чисел. Понятие о рациональном числе. Десятичное приближение обыкновенной дроби. Применение законов арифметических действий для рационализации вычислений.

Основная цель — выработать прочные навыки арифметических действий с положительными и отрицательными числами.

Навыки умножения и деления положительных и отрицательных чисел отрабатываются сначала при выполнении отдельных действий, а затем в сочетании с навыками сложения и вычитания при вычислении значений числовых выражений.

При изучении данной темы учащиеся должны усвоить, что для обращения обыкновенной дроби в десятичную достаточно разделить числитель на знаменатель. В каждом конкретном случае они должны знать, в какую десятичную дробь обращается данная обыкновенная дробь — конечную или бесконечную. При этом необязательно акцентировать внимание на том, что бесконечная десятичная дробь оказывается периодической. Учащиеся должны знать представление в виде десятичной дроби таких дробей, как ½, ¼.

  1. Решение уравнений (21 ч).Простейшие преобразования выражений: раскрытие скобок, приведение подобных слагаемых. Решение линейных уравнений. Примеры решения текстовых задач с помощью линейных уравнений.

Основная цель — подготовить учащихся к выполнению преобразований выражений, решению уравнений.

Преобразования буквенных выражений путем раскрытия скобок и приведения подобных слагаемых отрабатываются в той степени, в которой они необходимы для решения несложных уравнений.

Введение арифметических действий над отрицательными числами позволяет ознакомить учащихся с общими приемами решения линейных уравнений с одним неизвестным.

  1. Координаты на плоскости (14 ч).Построение перпендикуляра к прямой и параллельных прямых с помощью угольника и линейки. Прямоугольная система координат на плоскости, абсцисса и ордината точки. Примеры графиков, диаграмм.

Основная цель — познакомить учащихся с прямоугольной системой координат на плоскости.

Учащиеся должны научиться распознавать и изображать перпендикулярные и параллельные прямые. Основное внимание следует уделить отработке навыков их построения с помощью линейки и угольника, не требуя воспроизведения точных определений.

Основным результатом знакомства учащихся с координатной плоскостью должны явиться знания порядка записи координат точек плоскости и их названий, умения построить координатные оси, отметить точку по заданным ее координатам, определить координаты точки, отмеченной на координатной плоскости.

Формированию вычислительных и графических умений способствует построение столбчатых диаграмм. При выполнении соответствующих упражнений найдут применение изученные ранее сведения о масштабе и округлении чисел.

  1. Элементы статистики, комбинаторики и теории вероятностей (6 ч)

Понятие о случайном опыте и событии. Достоверное и невозможное события. Сравнение шансов. 

Примеры решения комбинаторных задач: перебор вариантов, правило умножения.



  1. Повторение. (11 ч).