Муниципальное бюджетное общеобразовательное учреждение г. Иркутска средняя общеобразовательная школа № 22
Рассмотрено: На заседании МО
Протокол №____
« ____» ___________2016г.
_____________руководитель МО
Согласовано:
заместитель директора по УВР
______________ Владимирова М.Н.
«____» ____________ 2016 г.
Утверждаю:
Директор МБОУ г. Иркутска
СОШ № 22
___________ Школьняк С.Ю.
№ _________ от ___________2016г.
Рабочая программа учебного предмета
математика « алгебра » _8 Б класс
базовый уровень
Составитель:
Антипина Ралия Карбангалиевна, учитель математики 1КК
Рабочая программа составлена на основе
примерной государственной программы по алгебре для общеобразовательных школ 7-9 классы
2016 г.
I. Пояснительная записка
Данная рабочая программа ориентирована на учащихся 8 класса и реализуется на основе следующих документов:
Программы общеобразовательных учреждений. Алгебра. 7-9 классы. Составитель: Бурмистрова Т.А. – М.: Просвещение
Государственный стандарт основного общего образования по математике.
Программа соответствует учебнику «Алгебра. 8 класс» / Ю.Н. Макарычев, Н.Г. Миндюк и др.; под ред. С.А. Теляковского. М.: Просвещение
Преподавание ведется 3 часа в неделю, всего 102 часов в год.
Изучение математики на ступени основного общего образования направлено на достижение следующих целей:
овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.
В ходе освоения содержания курса учащиеся получают возможность:
развить представления о числе и роли вычислений в человеческой практике;
сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;
овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;
изучить свойства и графики функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;
получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.
Требования к математической подготовке учащихся 8 класса
В результате изучения алгебры ученик должен
существо понятия математического доказательства; примеры доказательств;
существо понятия алгоритма; примеры алгоритмов;
как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
как потребности практики привели математическую науку к необходимости расширения понятия числа;
вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;
выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним;
решать линейные неравенства с одной переменной и их системы;
находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;
описывать свойства изученных функций, строить их графики;
выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;
моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;
описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;
интерпретации графиков реальных зависимостей между величинами.
Планируемые результаты изучения курса алгебры
В результате изучения алгебры в 8 классе ученик должен знать и понимать
- определения основных понятий, изученных в 8 классе, основные формулы сокращенного умножения, обосновывать свои ответы, приводить нужные примеры.
К концу 8 класса учащиеся должны уметь:
-составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через другую;
-выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
-применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
-решать линейные, квадратные уравнения по общей формуле корней квадратного уравнения и теореме Виета, рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;
-решать линейные с одной переменной и их системы;
-решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
-изображать числа точками на координатной прямой;
-определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;
-находить значения функции, заданной формулой, таблицей, графиком по её аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей; знать свойства функций y=k/х, у=х2.
Использовать приобретённые знания и умения в практической деятельности и повседневной жизни для:
-выполнения расчётов по формулам, для составления формул, выражающих зависимости между реальными величинами; для нахождения нужной формулы в справочных материалах;
-моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;
-описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;
Элементы статистики
-извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;
-вычислять средние значения результатов измерений;
-находить частоту события, используя собственные наблюдения и готовые статистические данные;
Использовать приобретённые знания и умения в практической деятельности и повседневной жизни для:
-анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;
-решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объёмов, времени, скорости;
-понимания статистических утверждений.
II. Содержание курса
Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и показывает распределение учебных часов по разделам курса.
Содержание курса алгебры 8 класса включает следующие тематические блоки:
Контрольные работы по тексту администрации: -входной контроль
-промежуточный контроль
-итоговая контрольная по тексту администрации
итоговая контрольная
1
1
1
1
Итого
102ч
13
Характеристика основных содержательных линий
1. Рациональные дроби (23 ч)
Рациональная дробь. Основное свойство дроби, сокращение дробей.
Тождественные преобразования рациональных выражений. Функция [pic] и ее график.
Основная цель – выработать умение выполнять тождественные преобразования рациональных выражений.
Так как действия с рациональными дробями существенным образом опираются на действия с многочленами, то в начале темы необходимо повторить с учащимися преобразования целых выражений.
Главное место в данной теме занимают алгоритмы действий с дробями. Учащиеся должны понимать, что сумму, разность, произведение и частное дробей всегда можно представить в виде дроби. Приобретаемые в данной теме умения выполнять сложение, вычитание, умножение и деление дробей являются опорными в преобразованиях дробных выражений. Поэтому им следует уделить особое внимание. Нецелесообразно переходить к комбинированным заданиям на все действия с дробями прежде, чем будут усвоены основные алгоритмы. Задания на все действия с дробями не должны быть излишне громоздкими и трудоемкими.
При нахождении значений дробей даются задания на вычисления с помощью калькулятора. В данной теме расширяются сведения о статистических характеристиках. Вводится понятие среднего гармонического ряда положительных чисел.
Изучение темы завершается рассмотрением свойств графика функции [pic] .
2. Квадратные корни (19 ч)
Понятие об иррациональных числах. Общие сведения о действительных числах. Квадратный корень. Понятие о нахождении приближенного значения квадратного корня. Свойства квадратных корней. Преобразования выражений, содержащих квадратные корни. Функция [pic] ее свойства и график.
Основная цель – систематизировать сведения о рациональных числах и дать представление об иррациональных числах, расширив тем самым понятие о числе; выработать умение выполнять преобразования выражений, содержащих квадратные корни.
В данной теме учащиеся получают начальное представление о понятии действительного числа. С этой целью обобщаются известные учащимся сведения о рациональных числах. Для введения понятия иррационального числа используется интуитивное представление о том, что каждый отрезок имеет длину и потому каждой точке координатной прямой соответствует некоторое число. Показывается, что существуют точки, не имеющие рациональных абсцисс.
При введении понятия корня полезно ознакомить учащихся с нахождением корней с помощью калькулятора.
Основное внимание уделяется понятию арифметического квадратного корня и свойствам арифметических квадратных корней. Доказываются теоремы о корне из произведения и дроби, а также тождество [pic] , которые получают применение в преобразованиях выражений, содержащих квадратные корни. Специальное внимание уделяется освобождению от иррациональности в знаменателе дроби в выражениях вида [pic] . Умение преобразовывать выражения, содержащие корни, часто используется как в самом курсе алгебры, так и в курсах геометрии, алгебры и начал анализа.
Продолжается работа по развитию функциональных представлений учащихся. Рассматриваются функция , ее свойства и график. При изучении функции показывается ее взаимосвязь с функцией , где x ≥ 0.
3. Квадратные уравнения (21 ч)
Квадратное уравнение. Формула корней квадратного уравнения. Решение рациональных уравнений. Решение задач, приводящих к квадратным уравнениям и простейшим рациональным уравнениям.
Основная цель – выр