Рабочая программа Алгебра 9 авторы А.Г. Мерзляк и др.

Автор публикации:

Дата публикации:

Краткое описание: ...


муниципальное автономное общеобразовательное учреждение

города Калининграда

средняя общеобразовательная школа № 50




Рассмотрена на педагогическом совете

Протокол № ____ от ____________


«Утверждаю»

__________ / В. И. Гулидова/

Директор МАОУ СОШ № 50

Приказ № ___ от __________











Рабочая программа

по алгебре

для «9» класса

базовый уровень обучения









Разработчик: Филиппова Ольга Эдуардовна

учитель математики
















2016 год

Оглавление







ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа по алгебре для 9 класса составлена в соответствии с Законом РФ от 29 декабря 2012 года № 273-ФЗ «Об образовании в Российской Федерации», требованиями ФК ГОС, примерной программой основного общего образования по алгебре, учебным планом МАОУ СОШ №50 на 2016—2017 учебный год.

В основу разработки программы положена авторская программа А.Г. Мерзляка, В.Б.Полонского, М.С. Якира, Д.А. Номировского, включенная в систему «Алгоритм успеха».

Программа обеспечена УМК для 9 классов авторов А.Г. Мерзляка, В.Б.Полонского, М.С. Якира, Д.А. Номировского.

В учебном плане МАОУ СОШ №50 учебный предмет алгебра относится к обязательной части.

На изучение предмета алгебры в 9 классе отведено 140 часов в год. Соответственно - 4 часа в неделю.

Курс алгебры 9 класса является фундаментом для математического образования и развития школьников, доминирующей функцией при его изучении в этом возрасте является интеллектуальное развитие учащихся. Курс построен на взвешенном соотношении новых и ранее усвоенных знаний, обязательных и дополнительных тем для изучения, а также учитывает возрастные и индивидуальные особенности усвоения знаний учащимися. Целями реализации основной образовательной программы образовательных организаций, работающих по системе УМК «Алгоритм успеха», являются:

становление и развитие личности в ее индивидуальности, самобытности, уникальности, неповторимости;

обеспечение планируемых результатов достижения выпускником целевых установок, знаний, умений, навыков, компетенций, определяемых личностными, общественными, государственными потребностями.

Достижение поставленных целей предусматривает решение следующих основных задач:

обеспечение преемственности начального общего, основного общего и среднего общего образования;

обеспечение доступности получения качественного образования, достижение планируемых результатов освоения основной образовательной программы всеми обучающимися;

установление требований к воспитанию и социализации обучающихся как части образовательной программы и соответствующему усилению воспитательного потенциала школы;

обеспечение эффективного сочетания урочных и внеурочных форм организации образовательного процесса, взаимодействия всех его участников;

выявление и развитие способностей обучающихся, в том числе одаренных детей;

социальное и учебно-исследовательское проектирование, профессиональная ориентация обучающихся при поддержке педагогов, психологов, социальных педагогов;

сохранение и укрепление физического, психологического и социального здоровья обучающихся, обеспечение их безопасности.

В основе реализации программы лежит системно-деятельностный подход, который предполагает:

воспитание и развитие качеств личности, отвечающих требованиям информационного общества, задачам построения российского гражданского общества на основе принципов толерантности, диалога культур и уважения его многонационального, поликультурного и поликонфессионального состава;

формирование социальной среды развития обучающихся в системе образования, соответствующей целям общего образования, переход к стратегии социального проектирования и конструирования на основе разработки содержания и технологий образования;

ориентацию на достижение цели и основного результата образования — развитие на основе освоения универсальных учебных действий, познания и освоения мира личности обучающегося, его активной учебно-познавательной деятельности, формирование его готовности к саморазвитию и непрерывному образованию;

признание решающей роли содержания образования, способов организации образовательной деятельности и учебного сотрудничества в достижении целей личностного и социального развития обучающихся;

учет индивидуальных возрастных, психологических и физиологических особенностей обучающихся, роли, значения видов деятельности и форм общения при построении образовательного процесса;

разнообразие индивидуальных образовательных траекторий и индивидуального развития каждого обучающегося, в том числе одаренных детей, детей-инвалидов и детей с ограниченными возможностями здоровья.

Ожидаемые результаты обеспечиваются за счёт использования следующих образовательных технологий:

  • технологии проблемного обучения,

  • технологии обучения в сотрудничестве,

  • технологии проектного и исследовательского обучения.

Освоение образовательной программы сопровождается текущим контролем успеваемости и промежуточной аттестацией учащихся.

Текущий контроль успеваемости учащихся проводится в течение учебного периода (четверти, полугодия) с целью систематического контроля уровня освоения учащимися тем, разделов, глав учебных программ за оцениваемый период, динамики достижения планируемых предметных и метапредметных результатов.

Формами текущего контроля усвоения содержания учебной программы являются:

письменная проверка (домашние, проверочные, лабораторные, практические, контрольные, творческие работы; письменные отчёты о наблюдениях; письменные ответы на вопросы теста; сочинения, изложения, диктанты, рефераты, стандартизированные письменные работы, комплексные работы по проверке метапредметных УУД;

устная проверка (устный ответ на один или систему вопросов в форме рассказа, беседы, собеседования, выразительное чтение (в том числе наизусть), стандартизированные устные работы);

комбинированная проверка (сочетание письменных и устных форм, защита учебных проектов, проверка с использованием электронных систем тестирования).

В соответствии с требованиями ФГОС приоритетными становятся новые формы контроля - метапредметные диагностические работы. Метапредметные диагностические работы составляются из компетентностных заданий, требующих от ученика не только познавательных, но и регулятивных и коммуникативных действий.

Традиционные контрольные работы дополняется новыми формами отслеживания результатов освоения образовательной программы, такими как:

целенаправленное наблюдение (фиксация проявляемых ученикам действий и качеств по заданным параметрам);

самооценка ученика по принятым формам (например, лист с вопросами по само рефлексии конкретной деятельности);

оценка результатов учебных проектов;

оценка результатов разнообразных внеурочных и внешкольных работ, достижений учеников.

Промежуточная аттестация подразделяется на:

годовую аттестацию – оценку качества усвоения учащимися всего объёма содержания учебного предмета за учебный год;

четвертную и полугодовую аттестацию – оценку качества усвоения учащимися содержания какой-либо части (частей) темы (тем) конкретного учебного предмета по итогам учебного периода (четверти, полугодия) на основании текущей аттестации.

Формами промежуточной аттестации являются:

- письменная проверка – письменный ответ учащегося на один или систему вопросов (заданий). К письменным ответам относятся: контрольные, творческие работы; письменные ответы на вопросы теста; сочинения, изложения, диктанты, рефераты и другое;

- устная проверка – устный ответ учащегося на один или систему вопросов в форме ответа на билеты, собеседования и другое;

- комбинированная проверка - сочетание письменных и устных форм проверок.

Система оценки планируемых результатов

Для оценки планируемых результатов данной программой предусмотрено использование:

  • вопросов и заданий для самостоятельной подготовки;

  • заданий для подготовки к итоговой аттестации;

  • тестовых задания для самоконтроля;

Виды контроля и результатов обучения:

  1. Текущий контроль

  2. Тематический контроль

  3. Итоговый контроль



Методы и формы организации контроля

  1. Устный опрос.

  2. Монологическая форма устного ответа.

  3. Письменный опрос:

    1. Математический диктант;

    2. Самостоятельная работа;

    3. Контрольная работа.

Особенности контроля и оценки по математике.

Текущий контроль осуществляется как в письменной, так и в устной форме при выполнении заданий в тетради.

Письменные работы можно проводить в виде тестовых или самостоятельных работ на бумаге Время работы в зависимости от сложности работы 5-10 или 15-20 минут урока. При этом возможно введение оценки «за общее впечатление от письменной работы» (аккуратность, эстетика, чистота, и т.д. ). Эта отметка дополнительная и в журнал выносится по желанию ребенка.

Итоговый контроль проводится в форме контрольных работ практического типа. В этих работах с начала отдельно оценивается выполнение каждого задания, а затем вводится итоговая отметка. При этом итоговая отметка является не средним баллом, а определяется с учетом тех видов заданий, которые для данной работы являются основными.

Оценка ответов учащихся

Оценка – это определение степени усвоения учащимися знаний, умений, навыков в соответствии с требованиями государственного образовательного стандарта.

        1. Устный ответ оценивается отметкой «5», если учащийся:

полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

изложил материал грамотным языком в определенной логической последовательности, точно используя специальную терминологию и символику;

правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

показал умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации при выполнении практического задания;

продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость используемых при ответе умений и навыков;

отвечал самостоятельно без наводящих вопросов учителя;

возможны одна-две неточности при освещении второстепенных вопросов или в рисунках, чертежах и т.д., которые ученик легко исправил по замечанию учителя.

2. Ответ оценивается отметкой «4», если он удовлетворяет в основном требованиям на отметку «5», но при этом имеет один из недостатков:

в изложении допущены небольшие пробелы, не исказившие содержание ответа;

допущены один-два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в рисунках, чертежах и т.д., легко исправленных по замечанию учителя.

3. Отметка «3» ставится в следующих случаях:

неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного материала;

имелись затруднения или допущены ошибки в определении понятий, использовании специальной терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

учащийся не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

при знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Оценка контрольных и самостоятельных письменных работ.

Оценка "5" ставится, если ученик:

  • выполнил работу без ошибок и недочетов в требуемом на «отлично» объеме;

  • допустил не более одного недочета в требуемом на «отлично» объеме;

Оценка "4" ставится, если ученик выполнил работу полностью, но допустил в ней:

  • не более одной негрубой ошибки и одного недочета в требуемом на «отлично» объеме;

  • или не более трех недочетов в требуемом на «отлично» объеме.

Оценка "3" ставится, если ученик правильно выполнил не менее половины работы или допустил:

  • не более двух грубых ошибок в требуемом на «отлично» объеме;

  • или не более одной грубой и одной негрубой ошибки и одного недочета;

  • или не более двух-трех негрубых ошибок;

  • или одной негрубой ошибки и трех недочетов;

  • или при отсутствии ошибок, но при наличии четырех-пяти недочетов.

Критерии выставления оценок за проверочные тесты.

1. Критерии выставления оценок за тест

Время выполнения работы: на усмотрение учителя.

Оценка «5» - 100 – 90% правильных ответов, «4» - 70-90%, «3» - 50-70%, «2» - менее 50% правильных ответов.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ



Изучение алгебры по данной программе способствует формированию у учащихся личностных, метапредметных и предметных результатов обучения, соответствующих требованиям федерального государственного образовательного стандарта основного общего образования.

Личностные результаты:

  • воспитание российской гражданской идентичности: патриотизма, уважения к Отечеству, осознания вклада отечественных учёных в развитие мировой науки;

  • ответственное отношение к учению, готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;

  • осознанный выбор и построение дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений с учётом устойчивых познавательных интересов, а также на основе формирования уважительного отношения к труду, развитие опыта участия в социально значимом труде;

  • умение контролировать процесс и результат учебной и математической деятельности;

  • критичность мышления, инициатива, находчивость, активность при решении математических задач.

Метапредметные результаты:

  • умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе, развивать мотивы и интересы своей познавательной деятельности;

  • умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;

  • умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации;

  • умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;

  • умение иллюстрировать изученные понятия и свойства фигур, опровергать неверные утверждения;

  • развитие компетентности в области использования информационно-коммуникационных технологий;

  • первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;

  • умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

  • умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме, принимать решение в условиях неполной или избыточной, точной или вероятностной информации;

  • умение понимать и использовать математические средства наглядности (графики, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;

  • умение выдвигать гипотезы при решении задачи, понимать необходимость их проверки;

  • понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

Предметные результаты:

  • осознание значения математики для повседневной жизни человека;

  • представление о математической науке как сфере математической деятельности, об этапах её развития, о её значимости для развития цивилизации;

  • развитие умений работать с учебным математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли с применением математической терминологии и символики, проводить классификации, логические обоснования;

  • владение базовым понятийным аппаратом по основным разделам содержания;

  • систематические знания о функциях и их свойствах;

  • практически значимые математические умения и навыки, их применение к решению математических и нематематических задач, предполагающее умения:

      • выполнять вычисления с действительными числами;

      • решать уравнения, неравенства, системы уравнений и неравенств;

      • решать текстовые задачи арифметическим способом, с помощью составления и решения уравнений, систем уравнений и неравенств;

      • использовать алгебраический язык для описания предметов окружающего мира и создания соответствующих математических моделей;

      • проводить практические расчёты: вычисления с процентами, вычисления с числовыми последовательностями, вычисления статистических характеристик, выполнение приближённых вычислений;

      • выполнять тождественные преобразования рациональных выражений;

      • выполнять операции над множествами;

      • исследовать функции и строить их графики;

      • читать и использовать информацию, представленную в виде таблицы, диаграммы (столбчатой или круговой);

      • решать простейшие комбинаторные задачи.



СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА



Неравенства

Числовые неравенства и их свойства. Сложение и умножение числовых неравенств. Оценивание значения выражения. Неравенство с одной переменной. Равносильные неравенства. Числовые промежутки. Линейные и квадратные неравенства с одной переменной. Системы неравенств с одной переменной.

Числовые функции

Функциональные зависимости между величинами. Понятие функции. Функция как математическая модель реального процесса. Область определения и область значения функции. Способы задания функции. График функции. Построение графиков функций с помощью преобразований фигур. Нули функции. Промежутки знакопостоянства функции. Промежутки возрастания и убывания функции. Квадратичная функция её свойства и график.

Элементы прикладной математики

Математическое моделирование. Процентные расчёты. Формула сложных процентов. Приближенные вычисления. Абсолютная и относительная погрешности. Основные правила комбинаторики. Частота и вероятность случайного события. Классическое определение вероятности. Начальные сведения о статистике. Представление данных в виде таблиц, круговых и столбчатых диаграмм, графиков. Статистические характеристики совокупности данных: среднее значение, мода, размах, медиана выборки.

Числовые последовательности

Понятие числовой последовательности. Конечные и бесконечные последовательности. Способы задания последовательности. Арифметическая и геометрическая прогрессии. Свойства членов арифметической и геометрической прогрессий. Формулы общего члена арифметической и геометрической прогрессий. Формулы суммы п первых членов арифметической и геометрической прогрессий. Сумма бесконечной геометрической прогрессии, у которой . Представление бесконечной периодической десятичной дроби в виде обыкновенной дроби.

Алгебра в историческом развитии.

История развития понятия функции. Как зародилась теория вероятностей. Числа Фибоначи. Задача Л. Пизанского (Фибоначчи) о кроликах.

Л.Ф. Магницкий. П.Л. Чебышев. П. Ферма. Р. Декарт, Н. Колмогоров, Ф. Виет. Эйлер, Н. Тарталья, Д. Кордано, Н. Абель, Б. Паскаль, Л. Пизанский, К. Гаусс.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

4 часа в неделю 140 часов

Номер

параграфа

Содержание учебного
материала

Количество часов

Характеристика основных видов деятельности ученика
(на уровне учебных действий)

Повторение

6


1

Числовые и алгебраические выражения

2


2

Свойства функций

1


3

Уравнения.

1


4

Текстовые задачи.

2


5

Вводный контроль

1


Глава 1

Неравенства

20


1

Числовые неравенства

3

Распознавать и приводить примеры числовых неравенств, неравенств с переменными, линейных неравенств с одной переменной, двойных неравенств.

Формулировать:

определения: сравнения двух чисел, решения неравенства с одной переменной, равносильных неравенств, решения системы неравенств с одной переменной, области определения выражения;

свойства числовых неравенств, сложения и умножения числовых неравенств

Доказывать: свойства числовых неравенств, теоремы о сложении и умножении числовых неравенств.

Решать линейные неравенства. Записывать решения неравенств и их систем в виде числовых промежутков, объединения, пересечения числовых промежутков. Решать систему неравенств с одной переменной. Оценивать значение выражения. Изображать на координатной прямой заданные неравенствами числовые промежутки

2

Основные свойства числовых неравенств

2


3

Сложение и умножение числовых неравенств. Оценивание значения выражения

3


4

Неравенства с одной переменной

1


5

Решение неравенств с одной переменной. Числовые промежутки

5



6

Системы линейных неравенств с одной переменной

5



Контрольная работа № 1

1


Глава 2

Квадратичная функция

42


7

Повторение и расширение сведений о функции

3

Описывать понятие функции как правила, устанавливающего связь между элементами двух множеств.

Формулировать:

определения: нуля функции; промежутков знакопостоянства функции; функции, возрастающей (убывающей) на множестве; квадратичной функции; квадратного неравенства;

свойства квадратичной функции;

правила построения графиков функций с помощью преобразований вида f(x) f(x)+а;

f(x)f(x + а); f(x)kf(x).

Строить графики функций с помощью преобразований вида f(x)f(x) + а;

f(x)f(x + а); f(x)kf(x).

Строить график квадратичной функции. По графику квадратичной функции описывать её свойства.

Описывать схематичное расположение параболы относительно оси абсцисс в зависимости от знака старшего коэффициента и дискриминанта соответствующего квадратного трёхчлена.

Решать квадратные неравенства, используя схему расположения параболы относительно оси абсцисс.

Описывать графический метод решения системы двух уравнений с двумя переменными, метод подстановки и метод сложения для решения системы двух уравнений с двумя переменными, одно из которых не является линейным.

Решать текстовые задачи, в которых система двух уравнений с двумя переменными является математической моделью реального процесса, и интерпретировать результат решения системы


8

Свойства функции

3


9

Как построить график функции y = kf(x), если известен график функции
y = f(x)

3


10

Как построить графики функций y = f(x) + b
и
y = f(x + a), если известен график функции y = f(x)

4


11

Квадратичная функция, её график и свойства

6



Контрольная работа № 2

1


12

Решение квадратных неравенств

7


13

Системы уравнений с двумя переменными

7


14

Решение задач с помощью систем уравнений второй степени

7



Контрольная работа № 3

1


Глава 3

Элементы примерной

математики

20


15

Математическое моделирование

3

Приводить примеры:

математических моделей реальных ситуаций; прикладных задач; приближённых величин; использования комбинаторных правил суммы и произведения; случайных событий, включая достоверные и невозможные события; опытов с равновероятными исходами; представления статистических данных в виде таблиц, диаграмм, графиков; использования вероятностных свойств окружающих явлений.

Формулировать:

определения: абсолютной погрешности, относительной погрешности, достоверного события, невозможного события; классическое определение вероятности;

правила: комбинаторное правило суммы, комбинаторное правило произведения.

Описывать этапы решения прикладной задачи.

Пояснять и записывать формулу сложных процентов. Проводить процентные расчёты с использованием сложных процентов.

Находить точность приближения по таблице приближённых значений величины. Использовать различные формы записи приближённого значения величины. Оценивать приближённое значение величины.

Проводить опыты со случайными исходами. Пояснять и записывать формулу нахождения частоты случайного события. Описывать статистическую оценку вероятности случайного события. Находить вероятность случайного события в опытах с равновероятными исходами.

Описывать этапы статистического исследования. Оформлять информацию в виде таблиц и диаграмм. Извлекать информацию из таблиц и диаграмм. Находить и приводить примеры использования статистических характеристик совокупности данных: среднее значение, мода, размах, медиана выборки

16

Процентные расчёты

3


17

Приближённые вычисления

2


18

Основные правила комбинаторики

3


19

Частота и вероятность случайного события

2


20

Классическое определение вероятности

3



21

Начальные сведения
о статистике

3



Контрольная работа № 4

1


Глава 4

Числовые

последовательности

17


22

Числовые последовательности

2

Приводить примеры: последовательностей; числовых последовательностей, в частности арифметической и геометрической прогрессий; использования последовательностей в реальной жизни; задач, в которых рассматриваются суммы с бесконечным числом слагаемых.

Описывать: понятие последовательности, члена последовательности, способы задания последовательности.

Вычислять члены последовательности, заданной формулой n-го члена или рекуррентно.

Формулировать:

определения: арифметической прогрессии, геометрической прогрессии;

свойства членов геометрической и арифметической прогрессий.

Задавать арифметическую и геометрическую прогрессии рекуррентно.


Записывать и пояснять формулы общего члена арифметической и геометрической прогрессий.

Записывать и доказывать: формулы суммы n первых членов арифметической и геометрической прогрессий; формулы, выражающие свойства членов арифметической и геометрической прогрессий.

Вычислять сумму бесконечной геометрической прогрессии, у которой | q | < 1. Представлять бесконечные периодические дроби в виде обыкновенных

23

Арифметическая прогрессия

4


24

Сумма n первых членов арифметической прогрессии

3


25

Геометрическая прогрессия

3



26

Сумма n первых членов геометрической прогрессии

2


27

Сумма бесконечной геометрической прогрессии, у которой | q | < 1

2



Контрольная работа № 5

1


Повторение

и систематизация

учебного материала

35


Упражнения для повторения курса 9 класса

34


Контрольная работа № 6

1




Перечень контрольных работ на 2016 – 2017 учебный год


работы

Учебная тема

Вид и форма контроля

Дата проведения

Дата по плану

Дата по факту

Комментарий

1

«Неравенства»

Контрольная работа




2

«Квадратичная функция»

Контрольная работа




3

«Квадратные неравенства. Системы уравнений с двумя переменными. Решение задач с помощью систем уравнений».

Контрольная работа




4

«Элементы примерной математики».

Контрольная работа




5

«Числовые последовательности».

Контрольная работа




6

Итоговая контрольная работа

Контрольная работа